
A Knowledge-Based information Extraction
Prototype for Data-Rich Documents in the

Information Technology Domain

By

Sergio Gonzalo Jimenez Vargas
sgjimenezv@unal.edu.co

A dissertation submitted in partial ful�llment
of the requirements for the degree of

Master of Sciences

Master in Systems Engineering and Computer Science
Systems and Industrial Engineering Department
National University of Colombia (Bogota D.C.)

2008

2

NATIONAL UNIVERSITY OF COLOMBIA

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Sergio Gonzalo Jimenez Vargas

This thesis has been read by each member of the following graduate com-
mittee and has been found to be satisfactory.

___________________ ________________________
Date Fabio A. Gonzalez O. (Chair)

___________________ ________________________
Date ???? ????

___________________ ________________________
Date ???? ????

___________________ ________________________
Date ???? ????

3

A Knowledge-Based information Extraction
Prototype for Data-Rich Documents in the

Information Technology Domain

Sergio Gonzalo Jimenez Vargas

Abstract

The Internet is a generous source of information. Semi-structured text doc-
uments represent great part of that information; commercial data-sheets of the
Information Technology domain are among them (e.g. laptop computer data-
sheets). However our capacity to automatically gather and manipulate such
information is limited due to the fact that those documents are designed to be
read by people. Many documents in domains such as the one of Information
Technology describe their commercial products in data-sheets with technical
speci�cations. People use those data-sheets mainly to make buying decisions.
Commercial data-sheets are a kind of data-rich documents. Data-rich docu-
ments have: a limited utilization of complex natural language structures, het-
erogeneous format, specialized terminology, names, abbreviations, acronyms,
quantities, magnitudes and units.

This thesis presents an information extractor for data-rich documents based
on the knowledge represented in a lexicalized domain ontology built mainly
with meronymy and attribute relationships. Ontology concepts were manu-
ally lexicalized with words and n-word terms in English. The extraction pro-
cess is mainly composed of a fuzzy string matcher module and a word sense
disambiguation-inspired (WSD) module. The former was used to �nd refer-
ences to ontology concepts allowing an error margin and the later was used to
choose the better concept and use/sense associated with each referenced concept
in a data-rich document according to its respective context.

A domain ontology, a lexicon and a labeled corpus were manually constructed
for the laptop computers domain using data-sheets downloaded from the web
sites of three of the most popular computer brands. The ontology had more
than 350 concepts and the lexicon had more than 380 entries with at least
1500 di�erent related terms. The validation corpus was �ve selected data-sheet
documents with more than 5000 tokens in total of which 2300 are extraction
targets. The built ontology and lexicon not only �tted the validation corpus
but it covered a set of 30 laptop data-sheets.

The problem of approximate text string matching using static measures were
reviewed. The static string measures are those that compares two strings in an
algorithmic way using only the information contained in both strings. Addition-
ally, a comparative study of di�erent string comparison techniques at character
and at token-level was made using data sets well known in the related litera-
ture. Particularly, a new general fuzzy cardinality-based combination method

4

of string measures at character level with resemblance coe�cients (e.g. Jaccard,
Dice, cosine) is proposed and encouraging results were obtained.

In order to develop theWSD-inspired disambiguator, the concept of semantic
path was proposed allowing three basic uses: (i) to de�ne an unambiguous label
for semantic document annotation, (ii) to determine the use/sense inventory
for each ontology concept and (iii) to serve as comparison unit for semantic
relatedness measures. A semantic path is a chain of concepts that connects the
ontology root concept with in a terminal concept (or �sink� node) in an ontology
directed acyclic graph.

The proposed disambiguation technique was inspired in WSD methods based
on general lexicalized ontologies such as WordNet. Additionally, a new global
context graph-optimization criterion for disambiguation was proposed (i.e. short-
est path). That criterion seemed to be suitable for the speci�c task reaching
a F-measure above the 80%. Finally, the information extractor showed to be
resilient against random noise introduced in the lexicon.

Acknowledgments

I am indebted to many people for their assistance and support to my thesis
work. This work could not have been possible without the support of many
people inside and outside of National University of Colombia. I would like to
express particular appreciation to the following people.

To my wife, colleague and partner, Claudia Becerra, who has provided the
main inspiration, encouragement and every day moral support in completing
this thesis. I also appreciate her love, help and tolerance of all the late nights
and weekends which we have put in studying, discussing and working, I am
grateful.

To my advisor, Dr. Fabio Gonzalez, whose enthusiasm, intelligence and
advice inspired me to accomplish this work. I would like to thank him for all
the generous time in his very busy schedule to discuss ideas. I also would like
to thank Dr. Alexander Gelbukh, for his valuable commentaries that reoriented
our approach to the right way in the right time.

To Dr. Jonatan Gómez, who advised me during my e�orts to �nd boundaries
for this work and provide invaluable suggestions. To Dr. Yoan Pinzon, for his
time and support in my technical writing for polishing my thesis. To Dr. Luis F.
Niño and Dr. Elizabeth León, their skillful teaching and patient tutoring were
helpful to me in the early stages of this project. To Zaza Aziz, who patiently
help me to improve my English skills. Special thanks to my colleagues at the
Laboratory of Intelligent Systems (LISI) and to the fellow students of the three
research seminars who have provided their valuable commentaries and feedback
during innumerable presentations, reviews and waiting times.

I also would like to thank Emilse Villamil, who has provided invaluable
assistance taking kindly care of my daughters. Thanks for her help and patience
with my irregular schedule and undoubtedly for her healthy and delicious food.

Finally, I would like to thank my daughters Sara and Luisa for their bright
smiles, company, happiness and unconditional love that gave to me the necessary
motivation to support all the time in my life.

5

Contents

Signature Page 2

Abstract 4

Acknowledgments 5

1 Introduction 14
1.1 Research Questions and Contributions 18
1.2 Thesis Structure . 20

2 Domain Ontology, Lexicon and Corpus 21
2.1 Ontologies . 21

2.1.1 Ontology Constructors . 22
2.1.2 Formal De�nitions . 23

2.2 The Laptop Ontology . 23
2.3 The Laptop Lexicon . 28
2.4 Evaluation Document Corpus . 30

2.4.1 The Tokenizer . 32
2.4.2 Semantic Paths . 33
2.4.3 Annotation Schema . 33

3 Static Fuzzy String Searching in Text 35
3.1 Introduction . 36
3.2 Static Fuzzy String Measures . 37

3.2.1 Character-Based Measures 37
3.2.1.1 Edit-Distance Family 37
3.2.1.2 Jaro and Jaro Winkler Distances 39
3.2.1.3 q-gram Distances 39
3.2.1.4 Bag Distance . 40
3.2.1.5 Compression Distance 40

3.2.2 Token-Level Cardinality-Based Resemblance Coe�cients . 41
3.3 Combining Character-Level Measures at Token-Level 41

3.3.1 Monge-Elkan method . 41
3.3.2 Token Order Heuristics 42
3.3.3 Token Edit-Distance . 43

6

CONTENTS 7

3.3.4 Minkowski Family Metrics Combining character/token-
level similarities . 43

3.4 An Extension to Monge-Elkan Combination Method 44
3.5 A New Cardinality-Based Token-/Character-level Combination

Method . 45
3.6 Experimental Evaluation . 49

3.6.1 Experimental Setup . 50
3.6.1.1 Data-sets . 50
3.6.1.2 Experimental Setup 51
3.6.1.3 Experiments Performance Measure 53
3.6.1.4 Statistical Test 56

3.6.2 Results . 59
3.6.2.1 General Ranking 59
3.6.2.2 Comparison versus Baselines and the MongeElkan

Method . 60
3.6.2.3 Results for Extended Monge-Elkan Method . . . 60
3.6.2.4 Results of the New Cardinality-Based Methods . 64
3.6.2.5 Results by Data-set 64

3.7 Conclusions . 67

4 Knowledge-basedWord Sense Disambiguation Methods for Term
Disambiguation 69
4.1 Semantic Relatedness . 70

4.1.1 Graph-based Semantic Relatedness Measures 71
4.1.2 Corpus-based Semantic Relatedness Measures 73
4.1.3 A New Semantic Relatedness Measure 74

4.2 Knowledge-Based Word Sense Disambiguation 74
4.2.1 Gloss overlap WSD Algorithms 75
4.2.2 Semantic-Relatedness-based WSD Algorithms 76
4.2.3 Graph-based WSD Algorithms 76

4.3 A New Graph-Based Term Disambiguation Strategy: Shortest-Path 78

5 An Information Extraction System for Data-Rich Documents 81
5.1 The Fuzzy String Searcher . 82
5.2 The Use/Sense Inventory . 84
5.3 The Implemented Semantic Relatedness Measures 84
5.4 The Term Disambiguation Module 85
5.5 Experimental Validation . 86

5.5.1 The Performance Metric 89
5.5.2 Results for the Fuzzy String Matcher 92
5.5.3 Results for Semantic Relatedness Measures 97
5.5.4 Results for Disambiguation Strategies 97

5.6 Conclusions . 99

CONTENTS 8

6 Matching Sensitive to Acronyms and Abbreviations 101
6.1 Acronym/Abbreviation Matching 102

6.1.1 String Comparison-Based Methods 103
6.1.2 Rule-/Heuristics-Based Methods 103
6.1.3 Induced Rules Methods 106
6.1.4 Supervised Methods . 107

6.2 A Fuzzy String Matcher sensitive to Acronyms and Abbreviations 107
6.2.1 The Acronym Tokenizer 108
6.2.2 Acronym Sensitive Token Matcher 108

6.3 Experimental Results . 109

7 Conclusions 112
7.1 Conclusions . 112
7.2 Summary of Contributions . 112
7.3 Future Work . 113

A Laptop Ontology 114
A.1 CommercialO�er . 114
A.2 ProductID . 114
A.3 Processor . 115
A.4 Chipset & Memory . 115
A.5 HardDisk . 116
A.6 Display . 116
A.7 VideoAdapter . 116
A.8 OpticalDrive . 117
A.9 NetworkAdapter (s) & Modem . 117
A.10 InputDevice (s) . 118
A.11 Battery & ACAdapter . 118
A.12 PhysicalDescription . 119
A.13 AudioAdapter & Speaker . 120
A.14 MediaAdapter & Interfaces & ExpansionSlots 120
A.15 WarrantyServices . 121
A.16 Software . 122
A.17 Security . 122
A.18 Measurements . 123

B Laptop Lexicon 125

C A Laptop Labeled Data-sheet Example 143

List of Figures

1.1 Samples of data-rich documents (laptop data-sheets). 15
1.2 Example of an unambiguous labeling over a document sequence

sample. 19

2.1 Laptop ontology DAG sample. 25
2.2 Node counting chart for each out-degree level in the ontology graph. 26
2.3 Node counting chart for each in-degree level in the ontology graph. 26
2.4 Semantic path counting chart for di�erent semantic path lengths

in the ontology graph. 27
2.5 Terminal nodes counting chart for di�erent number of their se-

mantic paths. 27
2.6 Laptop lexicon entry example. 28
2.7 Term counting chart grouped by the number of times that terms

are referred in the laptop lexicon. 30
2.8 Concept counting chart grouped by the number of terms in each

concept in the laptop lexicon. 31
2.9 Chart of the counting of terms grouped by their number of tokens

in the laptop lexicon. 31

3.1 Edit distance dynamic programing matrix example 37
3.2 Precision, recall and F-measure vs. threshold curves for the ex-

periment {ed.Dist.-Cosine(A) ,Business}. 55
3.3 Precision-recall curve for the experiment {ed.Dist.-Cosine(A) ,Busi-

ness}. 55
3.4 Interpolated precision-recall curve at 11 evenly separated recall

points . 56
3.5 Average IAP behavior of the exponent m in extended Monge-

Elkan method for each internal character-level string similarity
measures. 65

3.6 Average IAP behavior of the exponent m in extended Monge-
Elkan method for all internal character-level string similarity mea-
sures (averaged). 65

9

LIST OF FIGURES 10

4.1 Path length semantic relatedness example in a �has-part�/�has-
attribute" hierarchy . 72

4.2 Weighted path length semantic relatedness measure example. . . 74
4.3 Sample graph built over the set of possible labels (shaded nodes)

for a sequence of four words (unshaded nodes). Label dependen-
cies are indicated as edge weights. Scores computed by the graph
based algorithm are shown in brackets, next to each label (taken
from Sinha and Mihalcea [59, 83]) 77

4.4 Word sense disambiguation scenario. 78
4.5 Term disambiguation scenario. 79
4.6 A sample of the graph aligned to the token sequence for term

disambiguation. 80

5.1 Overall architecture for the Information Extraction system . . . 82
5.2 Sample of the matching schema. 83
5.3 A sample of semantic paths for the terminal concept MegaByte. . 85
5.4 Token sequence labeled with possible senses (i.e. semantic paths) 86
5.5 Graph of semantic paths aligned to the document token sequence 87
5.6 Characterization of the labeling problem as a two class problem. 89
5.7 Counting of true positives, false positives and false negatives

ranging the string matching threshold in (0,1]. This result was
obtained using edit distance at character level, Minkowski dis-
tance at token level (p = −10), path length as semantic related-
ness measure, shortest path as disambiguation strategy using the
noise-free laptop lexicon. 90

5.8 Precision/recall/F-measure vs. threshold plot for the same ex-
periment of �gure 5.7. Baselines are obtained with the same
experimental setup but changing the string matching technique
to exact match. 91

5.9 Recall-precision plot the same experiment of �gure 5.7. 92
5.10 Number of valid matches for di�erent string comparison thresh-

olds using EditDistance-MongeElkan as matching method. 93
5.11 F1-score for di�erent matching methods using �ve levels of character-

edition noise in the lexicon. 95
5.12 F1-score for di�erent matching methods using �ve levels of character-

edition noise combined with token shu�e noise in the lexicon. . . 95
5.13 Precision/recall/F-measure vs. threshold plots 96
5.14 F-measure using shortest-path and di�erent semantic relatedness

measures. 98
5.15 Number of nodes in the disambiguation graph for di�erent string

comparison thresholds. 98
5.16 Extraction performance (F-measure) comparison between the Adapted

Lesk with window size of 3 vs. shortest path and baselines. . . . 99

6.1 Pattern/document example. 109

LIST OF FIGURES 11

6.2 Example of the token con�guration combinations enumerated by
the acronym sensitive token matcher. 110

6.3 Performance comparison of the information extraction system
with and without the acronym sensitive matcher. 111

List of Tables

2.1 Concepts lexicalized with regular expressions in the laptop lexicon. 29
2.2 Document identi�cation of the evaluation document corpus. . . . 30
2.3 Internal description of the evaluation document corpus. 32

3.1 Some expressions of resemblance coe�cients. 42
3.2 Meaning of the Minkowski distance and generalized mean exponent. 44
3.3 Token pairwise similarities with edit-distance-based similarity mea-

sure for �Sergio Sergio Sergio� . 47
3.4 Token pairwise similarities with edit-distance-based similarity mea-

sure for �Jimenez Gimenez Jimenez� 47
3.5 Token pairwise similarities with edit-distance-based similarity mea-

sure for �giveaway girlfriend gingerbread� 48
3.6 Token pairwise similarities with edit-distance-based similarity mea-

sure for �Bush Clinton Kerry� . 48
3.7 Examples of cardinality estimation with functions cardA(.) and

cardB(.). 48
3.8 Data-sets used to carry out experiments. 50
3.9 Data-set sample matches. 51
3.10 Second set of character-/Token-level combination methods based

in cardinality . 53
3.11 Critical values for the Wilcoxon test statistic for one-tailed test. . 58
3.12 IAPWilcoxon sign test for experiments 2gram-MongeElkan2 (method1)

and 2gram-compress(C)(method2) 58
3.13 IAPWilcoxon sign test for experiments 2gram-MongeElkan2 (method1)

and 2gram-compress(A) (method2) 59
3.14 General ranking for combined string matching methods. Part 1/3 61
3.15 General ranking for combined string matching methods. Part 2/3 62
3.16 General ranking for combined string matching methods. Part 3/3 63
3.17 Average IAP for baseline measures improved with MongeElkan

method. 63
3.18 Average IAP for the Monge-Elkan combination method compared

with the best combination method. 64
3.19 Average IAP for baseline measures improved with the best com-

bination method. 64

12

LIST OF TABLES 13

3.20 Values of the Wilcoxon's test statistic W− comparing extended
Monge-Elkan method versus the standard Monge-Elkan method. 64

3.21 Ranks of resemblance coe�cients performance in string matching. 66
3.22 Best matching methods by data-set. 67

5.1 List of boundary separators . 84
5.2 Description of the noisy generated lexicons with character edition

operations. 88
5.3 Description of the noisy generated lexicons with term shu�ing at

token level. 88
5.4 F1-score for di�erent string matching techniques using the noise-

free laptop lexicon. 93
5.5 F1-score for di�erent string matching techniques using the noise-

free laptop lexicon. 94
5.6 F1-score results for di�erent string matching techniques at di�er-

ent noise levels in the lexicon. 94
5.7 String matching thresholds for the F1-score results reported in

table 5.6. 97

6.1 Rule examples of the Park and Byrd's method. [70] 106

Chapter 1

Introduction

The amount of documents available electronically has increased dramatically
with the vertiginous growth of the Web, but our capacity to �understand� au-
tomatically those documents is still considered an open problem [34]. On the
other hand, information extraction (IE) is a natural language processing �eld
that aims to extract structured information from unstructured text documents.
For instance, extracting from a set of literary critics a list of authors, book titles
and publishers is an IE task. IE is considered a shallow reading process but is
a step towards solving the challenge of machine-reading.

Particularly, IE aims to �nd some selected entities and simple relations in
text documents. In the book publishing example, three target �elds can be
extracted (i.e. author, book title and publisher) and two possible relations
are �is-written-by� and �is-published-by". Usually, the targets of an IE process
is only for small part of document information in comparison with the entire
information contained in it. Many other entities and complex relations expressed
in the document are disregarded. For instance, criticisms, opinions, feelings,
sarcastic remarks, recommendations are out of the reach of the IE processes.

However, other document types can be considered in which the amount
of information that can be extracted is comparable to the total document in-
formation. For instance a laptop data-sheet describes the product in detail,
including features, composing parts and performance capabilities. Some exam-
ples of data-sheets are shown in �gure 1.1. Data sheets are plenty of entities
to be extracted and the majority of the relationship types between entities are
clearly de�ned. The most common relationships between entities in data-sheets
are �is-a�, �is-part-of�, �is-attribute-of�, �is-capability-of� or its inverses such as
�is-a-generalization�, �has-part�, �has-attribute� and so on. From now on, we
will refer that type of documents as data-rich documents.

Almost all mentioned entities and relations in data-rich documents are able
to be extracted and practically the entire document contains target entities to
be extracted. Due to this fact, IE processes in data-rich documents might have
better coverage and understanding of documents. Consequently, it is possible
to think that IE over data-rich documents is not a machine-reading process as

14

CHAPTER 1. INTRODUCTION 15

Figure 1.1: Samples of data-rich documents (laptop data-sheets).
a)

b)

CHAPTER 1. INTRODUCTION 16

shallow as IE over natural language text documents.
Data-rich documents in the Information Technology (IT) domain are fre-

quently used to describe products with technical and commercial purposes.
Those commercial data-sheets are relevant in e-commerce environments because
of people decides if some product is the one that they are looking for based in
the information contained in them . For instance, an buyer in the Internet look-
ing for a laptop using a price engine such as Pricegrabber 1 can �nd hundreds
of options with tens of features for each product data-sheet.

To read data-sheets in an automatic way (i.e. extract information) is the �rst
step to assist decision making processes. However, aided decision making is not
the only use scenario; technological monitoring, information retrieval re�nement,
automatic document translation, question answering, information integration
from texts, among others are applications for the information extracted from
data-rich documents.

The problem that is addressed in this thesis is to extract all the product
characteristics mentioned in a set of commercial data-sheets circumscribed to a
sub-domain of the IT domain. The selected the laptop computers sub domain
due the following reasons:

� Laptops are among the most popular products in the IT domain. There-
fore, a wide range of products are available and the extracted information
has special interest.

� Data-sheets that describe laptops have a considerable number of com-
posing parts, physical characteristics and technical features. Thus, the
methods, prototypes and conclusions developed in this thesis could be
applied to products of similar or smaller complexity.

The problem of IE in documents has been addressed in the past using di�erent
techniques. Some approaches use machine learning models trained with a la-
beled corpus (see [17] for a survey). The limited availability of labeled corpus is
generally a drawback and the process of building it for speci�c applications is
slow and expensive. However, those methods can be applied in several domains
and languages only with small changes. Another approach is to perform IE
based on a set of �xed extraction rules and dictionaries or gazetteer lists [27].
Rule-based approaches are relatively easy to setup but experts with linguistics
and speci�c domain skills are required for writing the rules, which also is, in
fact, an expensive resource. Another approach is to seed a small labeled corpus
[24] or set of rules and to use a bootstrapping strategy based on a large corpus
or the web [35, 23, 13]. This is an e�ective way to address the drawbacks of
previous approaches. Nevertheless, the size of the corpus has to be considerable
in order to achieve enough statistical evidence in order to make good general-
izations. In addition, the bootstrapping approaches based on the web require a
huge quantity of queries to search engines that commonly restrict the number
of queries.

1http://computers.pricegrabber.com

CHAPTER 1. INTRODUCTION 17

In general, the previously mentioned IE approaches exploit context, order
in text sequences and dictionaries in order to extract the target information in
poorly structured text or free text. There are another IE approach based on
the structural homogeneity of the documents. This IE systems are known as
wrappers [49, 20]. Wrappers exploit the visual formatting regularity of the web
pages in order to identify extraction targets.

The data-sheets documents that are being considered in this thesis have a
particular set of characteristics and challenges:

� The formatting homogeneity is not warranted. Even the documents gen-
erated by the same brand for similar products have several di�erences in
structure, style and appearance.

� The number of extraction targets is high. A typical laptop data-sheet can
have more than a hundred of extraction targets.

� The density of the extraction targets is high. The documents are plenty
of product features with long sequences of consecutive targets. Great part
of the IE approaches builds separate extraction models for each individual
target [37, 36]. This approach does not seem to be convenient in data-
sheets because the target density makes some targets become context the
others.

� The ambiguity of the targets is high. The ambiguity in target happens
when targets of the same time has di�erent meanings. For instance, ex-
tracting the targets date-of-the-news and date-of-the-event from a news
corpus, the dates have to be identi�ed and further disambiguated. The
measures in laptop data-sheets have the same type of ambiguity. For in-
stance, memory measures (e.g. 512MB) can stand for installed memory,
cache memory, size of the installed memory modules, memory require-
ments of a particular included software, video memory, etc. The same
type of ambiguity happens in other measures such as distances, weights,
voltages and more.

� High number of targets plus high density plus ambiguity means high label-
ing cost. To provide a labeled corpus for model construction or evaluation
is particularly an expensive task.

� The use of acronyms, abbreviations morphological variations in general
are extensive in data-sheets. For instance, �MS Win XP Pro Ed.� stands
for �Microsoft Windows XP Professional Edition�.

� The availability of large quantity of data-sheets for di�erent sub-domains
is not warranted. Whereas, it is possible to gather some hundreds of laptop
data-sheets in English, only a few tens can be found for blade-servers.

In order to face those challenges, a new approach that poses the IE task as a
word sense disambiguation (WSD) problem is proposed in this thesis. WSD

CHAPTER 1. INTRODUCTION 18

[60] is a natural language processing (NLP) task that aims to select the correct
sense combination for all polysemous words in a text. We noticed the following
similarities between WSD and our particular IE problem:

� The majority of the verbs, nouns and adjectives in a text are polysemous.
Each polysemous word is a disambiguation target that has to be labeled.

� The density of polysemous words in a text is high.

� The number of senses for each polysemous word can be very high if the
word senses are �nely de�ned.

� The selected sense combination re�ects the semantical coherence of the
text sequence. Similarly, the product features in a data-sheet have a co-
herence sequence clearly related with their meaning.

� Verbs, names and adjectives are subject to morphological variations such
as plurals, conjugations and gender.

A particular set of approaches that address WSD use as disambiguation resource
a general lexicalized ontology called WordNet [62]. WordNet is a semantic
network whose nodes are concepts and edges are semantic relationships such
as hypernymy (�is-a-generalization-of�), hyponymy (i.e. �is-a�), meronymy (�is-
part-of�), holonymy (i.e. the opposite of meronymy), synonymy and antonymy.
Besides, each concept has a set of lexicalizations in a particular language such
as English.

The ontologies can also be used to model concepts in speci�c domains and
their use have become popular with the arrival of the semantic Web [11]. On-
tologies have been used in the past for IE with di�erent roles: as repository of
the extraction model [33], as semantic dictionary of instances [74, 31, 57], as
schema to be populated with instances [42, 88], as source of inferences in ex-
tracted information [16]. Only a few approaches have used ontologies for guiding
the extraction process exploiting the ontology graph information [79, 96].

As part of the proposed solution, a laptop ontology was built by the authors
from scratch, describing thoroughly all the attributes and composing parts of a
laptop computer. Next, it was lexicalized with terms in English according to a
set of data-sheets gathered from Internet. This lexicalized ontology is used as
input to an information extraction system that labels the extraction targets us-
ing a WSD-inspired algorithm. On the other hand, the morphological variations
associated with the acronyms and abbreviations were addressed using a strategy
based in approximate string matching. The �nal output of the proposed system
is an unambiguous labeling over the text of the data-sheets. A sample of an
unambiguous labeling example is shown in �gure 1.2.

1.1 Research Questions and Contributions

Firstly, the approximate string matching problem in the name matching task
were thoroughly reviewed in order to provide a strategy to deal with the morpho-

CHAPTER 1. INTRODUCTION 19

Figure 1.2: Example of an unambiguous labeling over a document sequence
sample.

Is-attrib-of

Intel Core Duo Processor T2400 1024 MB rpmDDR2 120 GB 5400 (S-ATA)

Is-a

Processor

Brand

Processor

Line

Is-a

Laptop

Processor

Model

Name

Is-a

Context

Is-a

Processor

Is-attrib-of

Is-attrib-of

Memory

Magnitude

Memor

y Units

Memory

Technology

Is-aIs-aIs-a

Memory

Size

Is-part-of

Is-part-of

Memory

Is-attrib-of

Is-attrib-of

Hard Disk

Size

Magnitude

Hard

Disk

Size

Units

Is-aIs-a

Hard Disk

Size

has

Is-part-of

Hard Disk

Speed

Magnitude

Hard

Disk

Speed

Units

Is-a
Is-a

Hard Disk

Speed

Is-part-of
Is-part-of

Hard DIsk

Is-attrib-of
Is-attrib-of

Hard Disk

Technology

Is-a

Is-attrib-of

Laptop

Computer

Is-part-of
Is-part-of

Is-part-of

logical variations of the terms mentioned in data-sheets. Particularly, we were
focused in the following question: Is it more convenient to treat text strings to
be compared as sequences of characters or sequences of tokens (i.e. words) in
the name matching task? In order to answer this question di�erent string com-
parison methods at character- and token-level were studied. Particularly, a new
general combination method based in fuzzy-cardinality for character and token
level measures were proposed in this thesis. Experiments carried out with 12
name matching data sets well studied in the related literature showed that the
proposed method consistently outperformed other methods or reached similar
results. The contribution made by this new method to the string processing
�eld has application in our speci�c term matching problem and additionally in
�elds such as natural language processing, bioinformatics and signal processing
as well.

The approximate string matching bring us the ability to detect terms that
have misspellings, OCR errors, typos and morphological variations. However,
it is unavoidable that very similar strings could have no relation at all. Besides,
given our speci�c information extraction task, the approximate string matching
provides �exibility for detecting terms, but it also provides noise. Some of the
experiments carried out in this work were designed to research about this trade-
o�.

Secondly, motivated by the speci�c problem that it is being addressing in
this thesis, we explored the applicability of the WSD techniques to the term
disambiguation problem in the context of an IE task. The main question is: Is
the proposed speci�c information extraction problem analogous to the NLP's
Word Sense Disambiguation problem? Our contribution to the IE �eld is to
explore that question providing a new way to address the extraction problem
when the number and type of targets is considerable.

Finally, another new ideas were proposed in this thesis but they were not

CHAPTER 1. INTRODUCTION 20

exhaustively compared with other similar approaches due the scope of this work.

� A new semantic annotation schema for documents based on semantic
paths. This annotation schema allows unambiguous semantic labels with
independence of the design of the ontology or the document format.

� The use of shortest path as disambiguation strategy in sequences of words/tokens
or terms.

� The acronym sensitive name matching were proposed as a method to
integrate acronym matching heuristics to any approximate string matching
technique based on tokens.

1.2 Thesis Structure

This document is structured as follows.
The chapter 2 presents the developed laptop ontology, lexicon and evalua-

tion document corpus. That resources are the input data for the proposed IE
prototype. That chapter describes and quanti�es the ontology, lexicon and the
labeled document included in appendices A, B, and C.

The chapter 3 studies the name matching problem using static approximate
string matching methods. This chapter can be read as a separated paper with
only a few references to the rest of the document. The experimental evaluation
of the proposed methods was made with data sets used in others previous studies
by researchers in the �elds of record linkage and name matching.

The chapter 4 the background and relevant previous works related to knowledge-
based WSD is presented. In addition a new graph disambiguation method based
on shortest path is proposed.

The proposed IE system is presented in chapter 5. This chapter assembles
the building blocks presented in chapters 3 and 4 in a coherent system. Addi-
tionally, an experimental evaluation was made in order to assess the proposed
methods for: approximate string matching, semantic relatedness measurement
and disambiguation strategy. The results obtained using those methods were
compared against baselines.

In chapter 6 the methods for acronym matching were reviewed and some of
the heuristics presented for those approaches were used to propose a method
to integrate the acronym matching to the name matching task. The proposed
method were integrated to the system presented in chapter 5 and its performance
where assessed comparing its results against the best results obtained in that
chapter.

Finally, chapter 5 gives the conclusions of this thesis and and discusses brie�y
the future work.

Chapter 2

Domain Ontology, Lexicon

and Corpus

The construction and preparation of the input data for the information extrac-
tor system proposed in this thesis is presented in this chapter. Firstly, some
basic concepts related to ontologies in the sense of a formalism for representing
knowledge are presented. Also we introduce some general issues about ontolo-
gies their constructors and formal de�nition in section 2.1 in order to make
understandable the next sections.

The system presented in this thesis was built from scratch. Thus the ontol-
ogy, lexicon and evaluation corpus were manually prepared by us. This process
is brie�y described in this chapter. In section 2.2 the laptop ontology is pre-
sented with the chosen formalism to represent it. Basically, the laptop ontology
describes in detail how a laptop computer is composed of and its attributes and
those of its composing parts. In section 2.3 the laptop lexicon is presented. This
lexicon is a dictionary with the representation in English terms of the concepts
included in the laptop ontology. Finally, in section 2.4 the selected data-sheet
corpus is presented with the selected annotation schema.

2.1 Ontologies

Ontologies are artifacts that are useful to describe real word entities and do-
mains. In computer science, ontologies are graphs in which their nodes (i.e.
vertices) are entities or concepts, and edges correspond to semantic relations
between them [41]. Ontology de�nition languages o�er a wide set of construc-
tors allowing complex ontology modeling. The most common type of relations
used in ontologies are hypernymy (i.e. �is-a�) and meronymy (i.e. �is-part-of� or
its inverse �has-part�). The former allows to de�ne an entity class hierarchy and
the latter describes the properties of each concept. Other common ontology con-
structors are cardinality restrictions on meronymy relations (e.g. a laptop has to
have only one �display panel� but can have zero to three �PCCard� slots). Other

21

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 22

important quality of the ontologies is its ability to obtain new knowledge using
logical inference or reasoning. For that, many ontology de�nition languages in-
clude the use of logical axioms such as universal and existential quanti�ers i.e.
∀∃.

The knowledge included in domain ontologies describes objects and domains
with concepts and relations. The names of those concepts and relations are
only reference names assigned by the person who builds the ontology. For in-
stance, the concept that represent a hard disk can be named like �HardDisk�
of �concept_235�. Clearly, good practices in ontology construction recommends
that the names of the concepts being represented are related to their names in
the real world. Although, the ontologies model real-word entities and concepts
there is not compromise of how those entities are referred in an speci�c language
such as English.

2.1.1 Ontology Constructors

The ontology constructors are the building blocks of the ontologies. Popular
ontology de�nition languages such as OWL1 have consolidated many of the most
used ontology constructors. Some of those constructors are listed as follows:

Class De�nition declares and names the de�nition of a set of entities that
represents a class.

Class Hierarchy is the de�nition of a class taxonomy tree or directed acyclic
graph (DAG) ranging from general classes to speci�c ones. Particularly,
class hierarchies are built with �is-a� relations, but those relations are
usually considered as a primitive constructor with special inheritance be-
havior.

Object Properties de�nes and names the relations between objects.

Domain/Range Restrictions de�nes the allowed classes in the left or right
parts of a relationship.

Cardinality Restrictions restricts the possible number of relations of the
same type that an entity can have.

Universal Restrictions are logical axioms (i.e. ∀) restricting a relation with
a condition that has to be satis�ed by all the instances of a class.

Existential Restrictions are logical axioms (i.e. ∃) restricting a relation with
a condition that has to be satis�ed by at least by one of the instances of
a class.

Sets Operations are class de�nitions based in previously de�ned classes and
set operations e.g. ∪, ∩.

1

http:/www.w3.org/2004/OWL/

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 23

2.1.2 Formal De�nitions

For the sake of clarity, a mathematical de�nition of the ontology model used in
this thesis is presented in this section. We de�ne an ontology O = {S,C, h, g}
where:

� S is the root concept (e.g. laptop).

� Cp is a set of internal or upper level concepts (e.g. memory , hard_disk ,
display , megabyte).

� Ct is a set of terminal or lower level concepts (e.g. megabyte) that are not
�divided� by hypernymy, holonymy or attribute relationships.

� h is the hypernymy (i.e. is-a) function h : (Cp ∪ S) → (Cp ∪ Ct) that es-
tablished a taxonomy of concepts and instances (e.g. Computer→hLaptop,
StorageDevice→h HardDisk , MemoryUnit→h MegaByte).

� g is the holonymy-/attribute-like (i.e. has-part, has-attribute) function g :
Cp → (Cp ∪ Ct) that establishes a composition hierarchy (e.g. Laptop→g

Display , Display→gDiagonalLength).

The lexicalization for an ontology is the addition of a dictionary of terms map-
ping the concepts modeled in the ontology in a language such as English. We
extend the previous ontology de�nition O to OL = {S,C, h, g, L, f} in order to
include the lexicon information as follows:

� L is a set of lexicalizations of concepts names (e.g. lexicalizations related
to the Brand concept are�brand�, �manufacturer�, �builder�, �made by�;
related to HP concept �HP�, �Hewlett Packard�, �HP corp.�)

� f is the lexicalization function f : (c1, c2, . . . , cn) → L with n ≥ 1 where
ci ∈ C and c1, c2, . . . , cn is a valid chain of concepts linked by h or g
relations. This function allows simple lexicalizations such as (HP)→f

{�Hewlett Packard�, �HP �} or more informative lexicalizations such as
(Software→gBrand→hMicrosoft)→f{�MS�, �Microsoft�}.

The de�nition of O is constrained to avoid cycles in the h and g functions
in agreement with real world modeling cases. The ontology O can also be
represented as a graph where the nodes are the sets S, C and edges are h and
g functions. This graph is also directed and without cycles, i.e. DAG (directed
acyclic graph).

2.2 The Laptop Ontology

The laptop ontology is a �ne grained description of all the parts and attributes of
a laptop computer. The model went beyond the physical description including
additional attributes such as prices, commercial issues, warranty terms, etc. The

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 24

aim of the ontology is to model all the concepts that are commonly included in
the laptop data-sheets used with commercial purposes.

The �rst step in the construction methodology of the ontology was to col-
lect 30 laptop data-sheets during the month of May 2007 from the web sites
of three popular laptop brands (i.e. Hewlett Packard2, Toshiba3 and Sony4).
Those documents were used to build from scratch the ontology trying to iden-
tify all the mayor concepts (i.e. processor, hard disk memory, etc.). Next,
each mayor concept was decomposed reviewing all the descriptions in the doc-
uments. The ontology construction was not a linear process, but it had many
feedback processes until an operative version was obtained. Additionally, the
concepts included in the ontology were not limited to the concepts mentioned in
the documents. For example, a complete system of units of memory, distance,
time, weight were de�ned even though some of those units were not cited in the
documents.

The built ontology can be represented as a directed acyclic graph. The
�gure 2.1 shows as illustration a small sample of that graph. Basically, the
graph contains three types of nodes and two type of edges. There is a �root�
node associated to the concept �Laptop� which has not incoming edges. The
other two types are the internal nodes that has both incoming and outgoing
edges, and the terminal nodes that have only incoming edges.

The edges in the ontology graph were mainly �has-part� relationships shown
with gray arrows in �gure 2.1. Actually, the �is-a� relationships (represented
with black arrows) were not used to model a class hierarchy but to model some
relations close to the terminal nodes. The reason to use the �is-a� relationships
in that way was due to the fact that the candidate �is-a� hierarchies were too
narrow and did not o�er to much added value. On the other hand, the com-
position hierarchy made with the �has-part� and ��has-attribute� relationships
was depth and carried important information. Additionally, a semantic network
with only one type of relationships is more convenient for the design of semantic
relatedness metrics between concepts (see section 4.1).

The laptop ontology is provided as reference in the Apendix A. The most
common format to represent ontologies in text is using a set of ordered triples
{entity1, relationship, entity2}. However signi�cantly higher legibility is ob-
tained with the format {entitya, relationship, [entity1, entity2,...]}. This mean
that the entity_a shares the same relationship with all the entities of the list.
For instance, {Laptop, has-part, [Processor , Memory , HardDisk , ...]}. In addi-
tion, the constructions were listed in a top-down approach presenting �rst the
constructions related to more general concepts.

Next some data related with the ontology graph are presented in order to
�gure out the general shape of the graph.

Number of nodes: 1 initial node, 237 internal nodes and 118 terminal nodes.
Total number of nodes: 355.

2http://www.shopping.hp.com/notebooks
3http://www.toshibadirect.com/laptops
4http://www.sonystyle.com

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 25

Figure 2.1: Laptop ontology DAG sample.

Brand

MHz

MBKB

DecimalReal Integer

GHz

GB

Laptop

Processor

ProductID

Family

Frequency Magnitude

Model

Speed

FrequencyMeasurement

Frequency Units

Cache

SizeLevel

FSB
Installed Max.Installable

Memory

MemorySize

MemoryMagnitude

Magnitude

MemoryUnits

HardDisk ...

...

...
...

...

...

...

...

Has-part
Has-attribute

Is-a

Initial node

Internal node

Terminal node

Number edges: 612

The �gures 2.2 and 2.3 show charts of the out-degree and in-degree of the ontol-
ogy graph nodes. The out-degree and in-degree of a node are respectively the
number of outgoing and incoming edges of a node. In �gure 2.2 is shown how
the counting of nodes in each out-degree level is directly relate with the speci-
�city of the node. For instance the more general node Laptop has the highest
out-degree and the more speci�c nodes (i.e. terminal nodes) are �sinks� or nodes
without outgoing edges.

Number of Semantic Paths: 1342 (i.e. number of di�erent paths from the
node Laptop to any terminal node).

The semantic paths are unambiguous chains of concepts that link the root con-
cept Laptop with a terminal node. The chart in �gure 2.4 gives an idea of the
depth of the graph. Another important issue related to the semantic paths is
the number of semantic paths for each terminal node. This issue is important
because of the more semantic paths are possible for a terminal node the higher
its �use� ambiguity. The chart with the counting of terminal nodes grouped by
their number of semantic paths is shown in �gure 2.5. That chart shows that
only 49 of the 118 terminal nodes are unambiguous. Thus, it is possible to say
that the laptop ontology has an ambiguity of 58.47% at terminal nodes level, or
ambiguity at terminal use.

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 26

Figure 2.2: Node counting chart for each out-degree level in the ontology graph.

118
104

56

26

14 14
5 7 6 1 1 1 1 1

0

40

80

120

0 1 2 3 4 5 6 7 8 9 10 11 12 23

node out-degree

co
u
n
ti
n
g

o
f
n
o
d
es

(L
ap

to
p
)

(T
im

eU
n
it

s)

(D
is

ta
n
ce

U
n
it

s)

(B
at

te
ry

)

(H
ar

d
D

is
k
)

()terminal nodes

(e.g. there are 56 nodes with out-degree measure of 2)

Figure 2.3: Node counting chart for each in-degree level in the ontology graph.

100

15
10 6 4 2 1 3 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 12 13 15 17 18 45

node in-degree

co
u
n
ti
n
g

o
f
n
o
d
es

(B
o
o
le

an
)

(B
ra

n
d
)

(I
n
te

g
er

)

(F
am

il
y
)

(M
ag

n
it

u
d
e)

(T
ec

h
n
o
lo

g
y
)

(V
er

si
o
n
)

(M
o
d
el

,
D

ig
it

)

(T
im

eM
ea

su
re

m
en

t)

350

(e.g. there are 15 nodes in the ontology graph with in-degree measure of 2)

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 27

Figure 2.4: Semantic path counting chart for di�erent semantic path lengths in
the ontology graph.

27

86

118

252

381

322

138

18

3 4 5 6 7 8 9 10

of nodes in the semantic path

co
u
n
ti
n
g

o
f
se

m
a
n
ti
c

p
a
th

s

(e.g. there are 86 semantic paths with length of 4 nodes)

Figure 2.5: Terminal nodes counting chart for di�erent number of their semantic
paths.

49

4

10 12

5
2

5
1 1 1 1 1 1 1

10

2

10

1 2 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 13 16 18 21 22 23 24 45 66 73 86 99

of semantic paths per terminal node

co
u
n
ti
n
g

o
f
te

rm
in

a
l
n
o
d
es

227

(I
n
te

g
er

)

(D
ec

im
al

)

(D
ig

it
)

(S
la

sh
)

(N
o
t)

(I
n
ch

es
)

(D
ay

,
H

o
u
r)

(B
ra

n
d
)

(V
er

si
o
n
)

(F
am

il
y
)

(B
it

)

(T
w

o
P

o
w

er
)

(T
ec

h
n
o
lo

g
y
)

(S
u
b
V

er
si

o
n
)

(e.g. there are 10 terminal nodes in the ontology with three semantic paths)

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 28

Figure 2.6: Laptop lexicon entry example.

REF_HardDisk

['Hard Disk','HD','HDD','Hard Disk Drive','Disk','Hard Drive']

CONCEPT

TERMS

TOKENS

2.3 The Laptop Lexicon

The laptop lexicon was built simultaneously and with the same methodology
used in the laptop ontology construction. Similarly to the laptop ontology the
reach of the terms included in the lexicon went beyond the selected data-sheets
particularly with the concepts related to measures and units.

The aim of the lexicon is to provide terms in English linked to concepts
in the ontology. For instance the ontology concept HardDisk is related in En-
glish with the terms �Hard Disk�, �Hard Drive� or with the acronyms �HD� or
�HDD�. Clearly, the terms can be composed of one or more words. We used the
term token for representing words because in this thesis some special characters
are considered �words�. For instance, the term �Built-in� can be tokenized as
{�Built�, �-�, �in�}.

Each lexicon entry is headed for a concept name and contains an unordered
list of terms. The �gure 2.6 depicts a lexicon entry with the roles of the concept,
terms and tokens.

The laptop lexicon includes two types of lexicalizations one for schema and
the other for data. The schema lexicalizations can be linked to any concept
(node) in the ontology even to the root concept Laptop and the terminals. They
were called schema lexicalizations because those terms refer to the names of
the targets that we are interested in extract. The schema lexicalizations can be
identi�ed by the pre�x �REF_� added to the concept name in the head of a
lexicon entry. The lexicon entry shown in �gure 2.6 is a schema lexicalization.

The data lexicalizations refer to the extraction targets such as numbers,
magnitudes, units, brand names, technology names etc. The data lexicalizations
are only linked to terminal nodes in the ontology. However, a terminal node
can be referred by both schema and data lexicalizations. For instance, the
terminal Brand has the schema lexicalization REF_Brand :[�Brand�, �Made by�,
�Manufactured by�] and the data lexicalization Brand :[�HP�, �Sony�, �Toshiba�,

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 29

Table 2.1: Concepts lexicalized with regular expressions in the laptop lexicon.
Concept Regular Expression

Integer '^[0-9]+$'
Decimal '^[0-9]+\.[0-9]+$'
UPCCode '^[0-9][0-9]{10}[0-9]$'
Version '^([0-9]+\.)+([0-9]+|x|a|b|c|d)$'

�Dell�].
As it was mentioned in section 2.1.2, more informative lexicon entries were

allowed including in the head a list of concepts. For instance, the lexicaliza-
tion ProcessorID_Brand :[�Intel�, �AMD�] refers only to processor brands. Also,
schema lexicalizations are allowed of have head entries with multiple concept
names like the following example: REF_Modem_Version: [�Version�, �Speed�,
�Compliant�].

For some special concepts, it is not possible to enumerate all their possible
related terms. For instance, the concept Integer clearly can not be enumerated.
In order to address this problem, regular expressions were allowed as terms in
lexicon entries. The concepts with terms expressed as regular expressions are
listed in table 2.1.

The complete version of the laptop lexicon is presented in the Appendix B.
In the same way that the ontology were outlined with some data, the following
counting over the complete lexicon can help to �gure out the structure of the
lexicon.

Total number of lexicalized concepts: 383 (lexicon entries)

Total number of terms: 1700

Number of di�erent terms: 1532

Total number of tokens: 2771

Number of di�erent tokens: 1374

Number of one-letter acronyms: 70 (e.g. 'A' for the concept Ampere)

Number of acronyms: 480

It is worth to note that there were a considerable di�erence between the counting
of terms and the counting of di�erent terms. This mean, that many terms were
included in more than one lexicon entry. The �gure 2.7 depicts the number of
terms according to the number of times that are referenced in lexicon entries.
Only 1410 terms are unambiguous. Thus, the lexicon has an ambiguity of
17.06% at term level.

Another issue is the number of terms by lexicon entry illustrated in �gure
2.8. That chart shows that only 49 concepts which have one term, the remaining
concepts are lexicalized with several terms. Many of these lexicalizations are

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 30

Figure 2.7: Term counting chart grouped by the number of times that terms
are referred in the laptop lexicon.

150

97

11 9
3 2

1 2 3 4 5 6

of references for each term

co
u
n
ti
n
g

o
f
te

rm
s

1410

(e.g. there are 97 terms that have been referred in two lexicon entries)

Table 2.2: Document identi�cation of the evaluation document corpus.
Doc ID. Brand Family Model Date (mdy)

1 Hewlett Packard Pavilion dv9500t 06/05/2007
2 Toshiba Satellite A130-ST1311 11/05/2007
3 Sony VAIO VGN-TXN15P/B 06/05/2007
4 Toshiba Satellite A135-S4498 11/05/2007
5 Hewlett Packard Pavilion dv9330us 06/05/2007

morphological variations of a same term. The most common of these variations
are the basic term and its acronymed form.

The number of token per term is depicted in �gure 2.9. Almost half of the
terms have more than one token. This fact motivated the content of chapter 3
where the multi-token approximate string comparison is discussed in depth.

2.4 Evaluation Document Corpus

In order to evaluate the information extraction system proposed in this thesis, it
is necessary to provide a labeled set to compare with the output of the informa-
tion extractor. Five data-sheets were chosen among the set of documents used
to build the laptop ontology and lexicon to constitute the evaluation corpus.
The laptop computers that those documents describe and the date of download
are shown in table 2.2.

The documents were labeled so that all the relevant tokens had a label.

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 31

Figure 2.8: Concept counting chart grouped by the number of terms in each
concept in the laptop lexicon.

49

91

80

49

22 19
13 12

8 6 5

24

0

50

100

1 2 3 4 5 6 7 8 9 10 11 >11

of terms per concept

co
u
n
ti
n
g

o
f
co

n
ce

p
ts

(e.g. there are 91 concepts with 2 terms)

Figure 2.9: Chart of the counting of terms grouped by their number of tokens
in the laptop lexicon.

992

436

221

30 8 11 2

0

500

1000

1 2 3 4 5 6 >6

tokens per term

co
u
n
ti
n
g

o
f
te

rm
s

(e.g. there are 436 terms with 2 tokens)

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 32

Table 2.3: Internal description of the evaluation document corpus.
Doc ID. #tokens #tokens target #targets schema targets data targets

1 1925 744 536 31.90% 68.10%
2 744 363 246 43.09% 56.91%
3 921 462 313 47.28% 52.72%
4 801 416 267 47.19% 52.81%
5 740 327 234 38.89% 61.11%

TOTAL 5131 2312 1596 40.23% 59.77%

Relevant tokens are those that belong to some extraction target. In the same
way that lexicon entries were divided in schema and data entries, extraction
targets are also separated by the same criteria. In table 2.3 the total number of
tokens, targets and the percentage of schema and data targets are reported for
each document. The manually labeled document #1 is included as reference in
Appendix C.

As it can be seen in the Appendix C, the text were extracted from the original
documents so that only text, punctuation marks and newline characters were
considered. All other formatting and structure tags were removed.

2.4.1 The Tokenizer

To tokenize a text means to divide the original character sequence into a se-
quence of sub-sequences called tokens. The text tokenizer was designed to �t
the special needing of the IT data-sheets and it is based in the following static
rules:

� One or more consecutive space characters are token separators.

� Any of the following characters are token separators and constitute them-
selves a one-character individual token: {'(', ')', '[', ']', '$', '%', '&', '+',
'-', '/', ';', ':', '*', '?', ' !', coma , <cr>, <lf>, <tab>, quote, double quote}.

� Consider period ('.') as token separator if it has at its right, left of both
sides character spaces.

� Divide into two tokens a consecutive digit and an alphabetic character,
e.g. �2GB� and �5400rpm� separates as �2�, �GB� and �5400�, �rpm� re-
spectively.

� Divide into three tokens a 'x' character surrounded by digits, e.g. �1200x768�
separates as �1200�, �x�, �768�.

The data-sheet documents in the corpus were tokenized using the those rules.
Similarly, when the terms in the lexicon were treated as sequences of tokens,
the tokenizing process were made with the same rules set.

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 33

2.4.2 Semantic Paths

As it was brie�y mentioned previously, the semantic paths are a sequence of
nodes starting with the initial node (i.e. Laptop) and �nishing in any terminal
node. This sequence has to be a valid path in the ontology graph. Let's consider
the semantic paths in the sample graph in �gure 2.1 for the terminal concept
MB (i.e. mega bytes):

1. Laptop→Processor→Cache→Size→MemorySize→MemoryUnits→MB

2. Laptop→Memory→Installed→MemorySize→MemoryUnits→MB

3. Laptop→Memory→MaxInstallable→MemorySize→MemoryUnits→MB

Each one of those semantic paths are the unambiguous possible uses for the
concept MB. Now, if an acronymed term such as �M.b.� is linked in the lexicon
to the concept MB, then those semantic paths are the possible uses (or senses)
for the term �M.b.�. Let's consider another example with the semantic paths for
the terminal Integer in the same graph:

1. Laptop→Processor→Speed→FrequencyMeasurement→
FrequencyMagnitude→Magnitude→Integer

2. Laptop→Processor→FSB→FrequencyMeasurement→
FrequencyMagnitude→Magnitude→Integer

3. Laptop→Processor→Cache→Size→MemorySize→
MemoryMagnitude→Magnitude→Integer

4. Laptop→Memory→Installed→MemorySize→
MemoryMagnitude→Magnitude→Integer

5. Laptop→Memory→MaxInstallable→MemorySize→
MemoryMagnitude→Magnitude→Integer

2.4.3 Annotation Schema

The proposed annotation schema for the data-sheet documents consist of linking
sub-sequences of tokens in the document to a semantic path. Let's consider the
string �Installed Memory: 512MB/2GB(max)�. The tokenized version of this
string is:

[�Installed�, �Memory�, �:�, �512�, �MB�, �/�, �2�, �GB,� �(�, �max�, �)�].
The labeled token sequence is as follows:

[�Installed�, �memory�]: Laptop→Memory→REF_Installed

[�:�]: no-label

[�512�]: Laptop→Memory→Installed→MemorySize→
MemoryMagnitude→Magnitude→Integer

CHAPTER 2. DOMAIN ONTOLOGY, LEXICON AND CORPUS 34

[�MB�]: Laptop→Memory→Installed→MemorySize→MemoryUnits→MB

[�/�]: no-label

[�2�]: Laptop→Memory→MaxInstallable→MemorySize→MemoryUnits→GB

[�(�]: no-label

[�max�]: Laptop→Memory→REF_MaxInstallable

[�)�]: no-label

Chapter 3

Static Fuzzy String Searching

in Text

The term fuzzy string searching (FSS) is used to refer the set of techniques that
compare strings allowing errors. FSS is based on similarity metrics that compare
sequences at character- and token-level. The static string metrics are those
that compare two strings with some algorithm that uses only the information
contained in both strings. On the other hand, adaptive methods are those that
use additional information from the corpus in supervised [80, 12] or unsupervised
forms such as the Soft-TD-IDF measure proposed by Cohen et al. or the Jensen-
Shannon distance [25]. Adaptive methods outperform other static metrics in
certain matching problems but have as drawbacks the cost to train the model,
the problem of getting labeled corpora and their scalability. This chapter is
focused in some widely known static string metrics.

This chapter also presents di�erent methods for combining static fuzzy string
metrics at character- and token-level. Many popular fuzzy string metrics (e.g.
edit-distance) use characters as comparison unit but do not take advantage of
the natural division in words (tokens) of text sequences considering the separator
character (i.e. space) as an ordinary character. On the other hand, token level
metrics consider words as comparison unit but most of them compare tokens
in a crisp way. In many NLP task, qualities of both character and token-level
metrics are desirable. Consequently the combination of those types of metrics
is an interesting topic. Only a few combination methods have been proposed
in the related literature. We tested and compared them with a new general
method to combine cardinality based coe�cients (e.g. Jaccard, dice, Sorensen,
cosine, etc.) with character-based (e.g. edit-distance, Jaro-distance, n-grams,
etc.) string metrics.

35

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 36

3.1 Introduction

String similarity metrics have been used to compare sequences in domains such
as the biomedical and the natural language processing (NLP). Probably the
most known character-level metric is the edit-distance originally proposed by
Levenshtein (1965) [53] consisting of counting the number of edition operations
needed to transform one string into other. The three basic operations are:
insertion, deletion and substitution. Several modi�cations to the original edit
distance have been proposed varying cost schemes and adding edit operations
such as transpositions, opening and extending gaps (see [32] for a recent survey).

Most of the character-based metrics consider the strings to be compared as
character sequences. That approach is very a�ordable when the strings to be
compared are single words having misspellings, typographical errors, OCR errors
and even some morphological variations. However, due to the inherent nature of
the human language, text sequences are separated into words (i.e. tokens). This
property can also be exploited to compare text strings as sequences of tokens
instead of characters. That approach deal successfully with problems such as
comparing strings with tokens out of order and with di�erent number of tokens,
and it has been used in �elds such as information retrieval [6], record linkage
[63], acronym matching [86] among others.

Depending on the speci�c matching task some metrics perform better than
others but there is not one technique that outperforms consistently the others
[12, 21]. For instance the edit-distance, Jaro distance and Jaro-Winker distance
[92] are suitable for name matching tasks but perform poorly for record linkage
or acronym matching tasks.

Approaches for combining [19, 64] character- and token-level metrics have
been proposed in order to preserve the character-level metric properties but
considering the token information. Nevertheless, the problem has not been
studied in detail and there is not a general method to combine the known
metrics.

In this chapter a new general method for using cardinality based metrics
such as Jaccard, dice and cosine coe�cients in combination with character-level
metrics. Additionally, we explored the use of the Monge-Elkan combination
method extended with the generalized mean instead of the simple arithmetic
mean. The proposed approaches open a wide set of options with the possible
combinations of known techniques that can be combined to deal with di�erent
matching problems in NLP.

This chapter is organized as follows. Section ?? review some of the most rele-
vant static character- and token-level string metrics. In Section 3.3, we reviewed
the known combination methods. In Section 3.5, our proposed new cardinality-
based combination method is presented. Results from some experiments carried
out using 12 data-sets are presented in Section 3.6. Finally, some concluding
remarks are given in Section 3.7.

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 37

Figure 3.1: Edit distance dynamic programing matrix example
S U N D A Y

0 1 2 3 4 5 6

S 1 0 1 2 3 4 5

A 2 1 1 2 3 3 4

T 3 2 2 2 3 4 4

U 4 3 2 3 3 4 5

R 5 4 3 3 4 4 5

D 6 5 4 4 3 4 5

A 7 6 5 5 4 3 4

Y 8 7 6 6 5 4 3

3.2 Static Fuzzy String Measures

Among the most popular character-level similarity metrics are the well known
edit-distance [53], longest common sub-sequence [68], Jaro-Winkler distance [92]
and n-gram distance [87]. Those metrics are useful to deal with typos and mis-
spellings but our special interest is its ability to deal with inconsistent abbrevi-
ations, variable acronym generation rules and typographical variations.

Unlike character-based similarity metrics, token-level metrics uses tokens
(i.e. words) as comparison unit instead of characters. Moreover algorithms
structure is analogous to many character-based algorithms, but instead of using
character comparisons an additional similarity metric between tokens has to
be supplied [19]. That inter-token metric can again be other character-based
approximate string metric.

3.2.1 Character-Based Measures

3.2.1.1 Edit-Distance Family

The edit distance was originally proposed by Levenshtein [53], and consist in
counting the number of edition operations needed to transform one sequence
in other. The tree basic operations are: insertion, deletion, substitution (or
replacement). The algorithm to compute the edit-distance [90] is a dynamic
programming solution that stores in a matrix the counting of edit operations for
all possible pre�xes of both strings. This algorithm computes the edit-distance
between two strings smand snof length m and n in a time complexity of O(mn)
and in a space complexity of O(min(m,n)). In Algorithm 1 an implementation
of the edit-distance is shown and in �gure 3.1 an example of the solutions matrix
is shown.

The edit-distance has been extended in the operations and in the cost asso-
ciated to them. For instance, the Damerau/Levenshtein-distance[28] considers
an additional edit operation: the transposition operation i.e. swapping of two
contiguous elements in the sequence. The Longest Common Sub-sequence [69, 4]

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 38

Algorithm 1 Edit distance
EditDistance(string1, string2)

//declare matrix of integers
d[0..len(string1), 0..len(string2)]

for i from 0 to len(string1)
d[i, 0] = i

for j from 1 to n
d[0, j] = j

for i from 1 to len(string1)
for j from 1 to len(string2)

if string1[i] = string2[j] then
cost = 0

else
cost = 1

d[i, j] = min(d[i-1, j] + 1, // deletion
d[i, j-1] + 1, // insertion
d[i-1, j-1] + cost) // substitution

return (d[m, n])

can be viewed as an edit-distance with an cost schema allowing only insertions
and deletions at cost 1 (the number of impaired characters). Hamming distance
[81] i.e. string matching with k mismatches, allows only substitutions at cost 1
counting the number of terms in the same positions (this approach is only suit-
able for strings with the same length). Needleman and Wunsch also proposed
a di�erentiate cost G (i.e. gap cost) for insertion and deletion operations; this
approach is also known as Sellers Algorithm.

Waterman et al. [65] proposed an edit-distance measure adding an alpha-
bet distance function d(c1, c2) , allowing di�erent costs to the edit operations
depending of the characters to be compared. For instance the substitution cost
for the characters '1' and 'l ' might be lower than the substitution cost between
'e' and 'h'.

Gotoh [40] modi�ed the distance proposed by Waterman et al. consider-
ing open-/extend-gap operations with variable costs (o or Smith-Waterman-
distance). These new operations allow closer matches with truncated or abbre-
viated strings (e.g. comparing 'Michael S. Waterman' with 'M.S. Waterman').
In order to have that property the cost of extending a gap have to be smaller
than the gap opening cost.

Ristad and Yianilos [80] were the �rst in propose an adaptive method to
learn the optimal costs for an edit-distance for a particular matching problem
in a supervised way. They proposed an edit-distance with three operations:
insertion, deletion and substitution. Let a and b be characters in the alphabet
Σ of the strings including ε, the empty character. The costs to be learned are
a matrix c of size |Σ| × |Σ| with the substitution costs at character level. The
insertion cost for a character a is ca,ε. Similarly the deletion and substitution

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 39

costs are cε,a and ca,b respectively. The optimal costs are estimated using a
training set with an expectation maximization (EM) strategy. Bilenko and
Mooney [12] proposed a similar approach to learn the optimal cost for an edit-
distance including open and extend-gap operations.

3.2.1.2 Jaro and Jaro Winkler Distances

The Jaro distance between two strings of length m and n takes only O(m+n)
in space and time complexity. It considers the number of common characters c
and the number of transpositions t using the following expression.

simJaro(sm, sn) = 1
3

(
c
m + c

n + c−t
c

)
The common characters are considered only in a sliding window of size

max(m,n)/2, additionally the common characters can not be shared and are
assigned with a greedy strategy. The case when c = 0, simJaro returned a value
of 0 avoiding division by zero. In order to compute the transpositions t two lists
with the common characters are ordered according with its occurrence in the
strings being compared. The number of non coincident characters in common
positions in both lists are the number of transpositions t.

The Jaro-Winkler distance [92] is an improvement of the Jaro distance con-
sidering the number of common characters at the beginning of the strings l using
the following expression.

simJaro−Winkler = simJaro + l
10 (1− simJaro)

3.2.1.3 q-gram Distances

The q-grams [48] are sub-strings of length q with in a string of length greater
than q. Depending on q the q-grams are called uni-grams, bi-grams (or dig-
grams), tri-grams and so on. For instance the trigrams in 'laptop' are 'lap',
'apt', 'pto', 'top'. Commonly, q − 1 pad characters are added as pre�x and
su�x in order to consider strings smaller than q and to di�erentiate q-grams at
the begin and the end of the string. The padded trigrams of 'laptop' are the
trigrams of the string '##laptop##' using '#' as padding character.

When two strings are being compared a resemblance coe�cient such as Jac-
card, dice or overlap coe�cient (see subsection 3.2.2) is used to compute a
�nal resemblance metric between them. The time complexity of computing and
comparing the q-grams of two strings of length m and n is O(m+n).

Additionally to normal q-grams some variations have been proposed. Skip-
grams [46] are bi-grams with one skip character in the center. For instance the
1-skip-grams of 'laptop' are 'l*p', 'a*p', 'p*o', 't*p'. With the exception of the
q-grams containing padding characters, q-grams do not carry information about
the position of the q-gram in the string. Another variation called positional -q-
grams adds the position in the string to each q-gram and considers only common
q-grams with a di�erent in their positions lower than a preestablished value. A
comparative study by Christen [21] showed that in a name matching data-set the

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 40

performance of di�erent q-grams measures can be ranked as follows: positional-
1-grams (better), 2-grams, positional-2grams, skip-grams, 1-grams, 3-grams and
positional 3-grams (worse).

3.2.1.4 Bag Distance

Bartlolini et al. [9] proposed an approximation to the edit distance between two
strings smand snof length m and n respectively, that can be computed in linear
time with the following expression.

dbag(sm, sn) = max{|sm − sn|, |sn − sm|}

The operator '-' of the di�erence has a bag semantics. For instance the
di�erence between the bags a, a, a, b and a, a, b, c, c is a. The bag distance �rst
�drops� common characters and then takes the maximum of the number of
elements in the asymmetrical di�erences.

The Bag-distance works as an approximation to the edit-distance but in less
time. All edit-distance family measures are computed in O(mn) and the bag-
distance is computed in O(m+n). Bag-distance has generally lower performance
than edit-distance, but gives an e�cient strategy to �lter candidates to the same
edit-distance and to other approximate string measures.

3.2.1.5 Compression Distance

Cilibrasi and Vitányi [22] proposed the idea of using data compression to obtain
a distance measure between two objects x, y using the Normalized Compression
Distance (NCD) computed with the following expression.

NCD(x, y) =
C(xy)−min {C(x), C(y)}

max {C(x), C(y)}

C(x) is the size of the compressed information of x, and C(xy) is the same
function but with the concatenation of x and y. The compressor C has to satisfy
the conditions of a normal compressor:

1. Idempotency. C(xx) = C(x), and C(λ) = 0, where λis the empty string.

2. Monotonicity. C(xy) ≥ C(x).

3. Symmetry. C(xy) = C(yx).

4. Distributivity. C(xy) + C(z) ≤ C(xz) + C(yz).

The data-compressor C for text strings and documents can be BZ2, ZLib or
any other data-compression method. This method was originally tested by the
authors in document clustering tasks. Christen [21] tested the method in a
comparative study of approximate string metrics, obtaining comparable results
against the best results obtained with measures of the Jaro and edit-distance
families.

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 41

3.2.2 Token-Level Cardinality-Based Resemblance Coe�-
cients

The token level measures consider the strings as sequences of tokens instead of
consider them as sequences of characters. The most common approach is to
handle the token sequences as sets and use resemblance coe�cients to compare
them.

The resemblance coe�cients are quotients that compares two sets putting
in the dividend a measure of comparison between them, and in the divisor a
normalizing magnitude that represents both sets. In order to compute those
measures the set operations union, intersection, di�erence and complement are
used. Additionally to the set operations, the common max() and min() func-
tions are used too.

Let A and B two multi-token strings. The set theory operations has partic-
ular meaning in set of tokens.

1. |A| =number of di�erent tokens in the A string.

2. |B| =number of di�erent tokens in the B string.

3. |A∩B| =number of di�erent tokens in common between A and B strings.

4. |A∪B| =number of di�erent tokens in common between A and B strings.

5. |A \B| =number of di�erent tokens present in A but not in B.

6. |A4B| =number of di�erent not common tokens in A and B.

7. |A|c= number of di�erent tokens that are not in the A string. Nevertheless,
this operation is not practical in the task of compare relatively shot strings
because the complement operation is made against a �nite universe with
cardinality n. This �nite universe could be the entire data-set vocabulary
that can be sin some cases a number considerably greater than the number
of tokens of a speci�c set of tokens.

8. n =number of di�erent tokens of the data-set.

Using the elements previously enumerated it is possible to build a wide range
of resemblance coe�cients. In table ,a list with some of the most known coe�-
cients. The name column in that table contains the common name used by the
scienti�c community or the reference name given by De Baets and De Meyer
[5].

3.3 Combining Character-Level Measures at Token-
Level

3.3.1 Monge-Elkan method

Monge and Elkan [64] proposed a simple but e�ective combination method to
combine two token sequences. Given two sequences a, b and an external inter-

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 42

Table 3.1: Some expressions of resemblance coe�cients.
Name Expression # Name Expression

1 Jaccard |A∩B|
|A∪B| 15 R9

max(|A\B|c,|B\A|c)
n

2 Dice 2×|A∩B|
|A|+|B| 16 R10

min(|A\B,|B\A|)
max(|A\B|,|B\A|)

3 cosine |A∩B|√
|A|×|B|

17 S17
|A∩B|

max(|A\B|c,|B\A|c)

4 Sorensen 2×|A∩B|
|A∪B|+|A∪B| 18 R12

min(|A\B,|cB\A|c)
max(|A\B|c,|B\A|c)

5 NCD1 |A∪B|−min(|A|,|B|)
max(|A|,|B|) 19 R13

min(|A\B,|B\A|)
|A4B|

6 overlap |A∩B|
min(|A|,|B|) 20 R14

min(|A|,|B|)
|A∪B|

7 Hamming |A4B| 21 R15
min(|A\B|c,|B\A|c)

n

8 matching |A4B|C
n 22 Rc3

|A∪B|c
min(|A|c,|B|c)

9 Russell-Rao |A∩B|
n 23 Rc5

|A∪B|c
|A∩B|c

10 R1
|A∩B|

max(|A|,|B|) 24 Rc8
max(|A|c,|B|c)
|A∩B|c

11 R2
|A4B|c

max(|A\B|c,|B\A|c) 25 Rc14
min(|A|c,|B|c)
|A∩B|c

12 R4
|A4B|c

min(|A\B|c,|B\A|c) 26 Sc17
|A∪B|c

max(|A\B|c,|B\A|c)

13 R7
max(|A\B|,|B\A|)

|A4B| 27 Sc18
|A∪B|c

n

14 R8
max(|A|,|B|)
|A∪B|

token similarity metric sim. The Monge-Elkan measure is computed as follows.

simMongeElkan(a, b) =
1
|a|

|a|∑
i=1

max |b|j=1sim(ai, bj) (3.1)

In fact the Monge-Elkan measure is an approximation in time complexity of
O(mn) of the optimal assignment problem in combinatorial optimization. This
approximation is reasonable due to the fact that the better solutions to the
assignment problem would have a time complexity of O(min(m,n)3).

3.3.2 Token Order Heuristics

Christen [21] proposed two combination heuristic for character-based string met-
rics that are sensitive to the order of the characters such as Jaro and edit-
distance family measures. Firstly, in order to compensate the weakness of those
measures the strings to be compared are tokenized (separated in words) then
ordered and joined again (sorted-tokens). The second heuristic consist of to list
all token permutations for one of the string and compare the resulting strings
with the second one (permuted-tokens). Finally the measure with the maximum
value is chosen.

Two comparative studies [73, 21] showed that the permuting heuristic out-
performs sorting. Unfortunately the complexity of exploring all order permuta-

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 43

tions is factorial, clearly un-practical when the number of tokens in the strings
is considerable.

3.3.3 Token Edit-Distance

Chaudhuri et al. [19] proposed the idea of use the edit-distance with tokens as
comparison unit instead of characters in a database data cleaning task. Anal-
ogously to the edit-distance, the three basic operations are token replacement,
token insertion and token deletion. The costs of those edit operations are func-
tions of tokens in question. For instance, the replacement cost can be a character
based distance measure between the token to be replaced and the replacement
token.

Chaudhuri et al. proposed costs for the insertion and deletion token opera-
tion weighted with the IDF (inverse document frequency) [45] factor, motivated
by the idea that more informative tokens are more expensive to be inserted or
deleted. However an static approach can consider insertion and deletion costs
as constants.

3.3.4 Minkowski Family Metrics Combining character/token-
level similarities

Vector space representation aims to express the strings to be compared as a
pair of vectors with the same norm (i.e. number of elements). When it is being
compared two sequence of tokens of the same size each token can be considered
as a vector component. In the string matching problems considered in this
chapter the vector space representation is not practical due to the fact that in
the majority of the cases the number of tokens of the strings being compared
are di�erent.

However, that vector representation is useful in tasks such as record linkage
and dictionary matching in documents. In the former task (record linkage), each
�eld of a record is a vector component and usually is a multi-token string. In
the later, each dictionary entry (pattern) has a �xed number of tokens usually
much more small than the tokens in the document. Therefore, when the pattern
is compared along the document sequence there are commonly enough tokens in
the document to provide a vector with the same norm of the pattern. Although
this combination method can not be applied in the context of this chapter, it
is worth to review it because of the information extraction system proposed in
this thesis has a dictionary (the laptop lexicon) to be matched with a set of
documents.

Let two records with the same �elds set R1 = {a1, a2, . . . , an}, and R2 =
{b1, b2, . . . , bn}; given a similarity function for each �eld i, simi(ai, bi). This
function simi(ai, bi) can be any similarity measure of those presented in chapter
. The problem is to obtain a total similarity measure sim(R1, R2) between both
records. The most common approach is to choose a metric from the Minkowski
family of distance metrics de�ned by:

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 44

Table 3.2: Meaning of the Minkowski distance and generalized mean exponent.
p meaning

→∞ maximum
2 quadratic mean
1 arithmetic mean
→ 0 geometric mean
-1 harmonic mean

→ −∞ minimum

sim(R1, R2) =

(
n∑
i=1

(simi(ai, bi))
p

) 1
p

(3.2)

The Euclidean and City-block distances are special cases of the equation 3.2
when the exponent p is equal to 2 and 1 respectively. Dey and Sarkar [29] used
the simplest measure from the Minkowski family with p = 1, but weighing the
�elds with the following weighed average sim(R1, R2) =

∑n
i=1 wisimi(ai, bi),

having
∑n
i=1 wi = 1.Weights widenote how much informative a �eld is.

The Minkowski distance is closely related with the concept of generalized
mean. In fact, the only di�erence between the generalized mean expression
(equation 3.3) and that of the Minkowski distance (equation 3.2) is the factor
1/n. This factor preserves the output normalized if the values to be averaged
were normalized.

x̄(p) =

(
1
n

n∑
i=1

xpi

) 1
p

(3.3)

The variable n means the number of values to be averaged and p is a param-
eter. For instance, when p = 2 the distances are combined with the euclidean
distance; for a complete description of p see table 3.2.

3.4 An Extension to Monge-Elkan Combination
Method

The Monge-Elkan method computes an arithmetical average of a sub-optimal
assignment between the tokens of two strings given a inter-token similarity mea-
sure (see equation 3.1). The arithmetical mean gives a �nal measure where
higher values are compensated with lower values of the similarity measure. How-
ever, this approach makes the assumption that higher inter-token similarities are
as informative than the lower ones. Consider the following example:

a =�Lenovo inc.�
b =�Lenovo corp.�
simedit−distance(a1, b1) = 1− 0

6 = 1

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 45

simedit−distance(a1, b2) = 1− 5
6 = 0.1666

simedit−distance(a2, b1) = 1− 5
6 = 0.1666

simedit−distance(a2, b2) = 1− 4
4 = 0

simMongeElkan(a, b) = 1
2 (max(sim(a1, b1), sim(a1, b2)) + max(sim(a2, b1), sim(a2, b2)))

simMongeElkan(a, b) = 1
2 (1 + 0.1666) = 0.5833

However, the �nal measure of 0.5833 seems very low having in account that
sim(a1, b1)is equal to 1. Additionally the simple edit distance measure looks
more suitable in that case.

simedit−distance(�Lenovo inc.�,�Lenovo corp.�) = 1− 4
12 = 0.6666

An approach that tries to promote higher similarities in the average cal-
culated in the equation 3.1 can be the use of the generalized mean instead of
the arithmetic mean. When the generalized mean exponent m is equal to 1
means the arithmetic mean, when m = 2 means the harmonic mean. In gen-
eral, the higher m, the stronger the promotion of higher values in the mean.
The generalized mean is computed with the following equation.

x̄(m) =
(

1
n
·
∑
xmi

) 1
m

Lets consider m = 2 in the previous example:

simMongeElkan2(a, b) =
(

1
2

(
12 + 0.16662

)) 1
2 = 0.7168

This harmonic mean gives more importance to the number 1 than to 0.1666.
We propose the idea that values of m greater than 1 can improve the perfor-
mance of the matching. The expression to calculate the Monge-Elkan measure
with the proposed extension can be written as follows.

simMongeElkanm
(a, b) =

 1
|a|

|a|∑
i=1

(
max |b|j=1sim(ai, bj)

)m 1
m

(3.4)

3.5 A New Cardinality-Based Token-/Character-
level Combination Method

The resemblance coe�cients are similarity measures used to compare sets. The
Jaccard coe�cient is one of them and is calculated with the following formula.

Jaccard(A,B) =
|A ∩B|
|A ∪B|

In order to compute the resemblance coe�cients it is necessary a cardinality
function |.| and only one basic set operation such as union or intersection due

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 46

to the set theory property: |A ∩B| = |A|+ |B| − |A ∪B|. Using this property,
the Jaccard coe�cient can be written as follows.

Jaccard(A,B) =
|A|+ |B| − |A ∪B|

|A ∪B|
(3.5)

As it was explained in sub section 3.2.2 if a string is considered as an
unordered set of tokens the resemblance coe�cients can be used to compare
multi-token strings. For instance Jaccard(�Sergio Jimenez�, �Sergio Gonzalo
Jimenez�)= 2

3 = 0.6666, that looks quite reasonable. However, if my name is
written with two common misspellings in Spanish Jaccard(�Cergio Gimenez�,
�Sergio Gonzalo Jimenez�)= 0

5 = 0, this expected result is due to the fact that
the identity function used in classic set operations is a crisp function. Using
the concept of identity of the classic set theory it is clear that |{�Jimenez�}|=1,
|{�Gimenez�}|=1, |{�Jimenez Jimenez�}|=1 and |{�Jimenez Gimenez�}|=2.

Now, lets consider two multi-token strings A and B with m and n tokens
respectively. The set of token of A is a1, a2, ..., anand b1, b2, ..., bmfor B. The
set of tokens of the concatenation of both strings A ⊕ B is A ∪ B. Clearly,
the concatenation operator ⊕takes care of insert a character space separator
between both string in order to avoid that anand b1become a single token.

Lets assume that we have a function card(.) that takes an unordered list of
tokens and returns some kind of text cardinality. The Jaccard coe�cient can
be rewritten as.

Jaccard(A,B) =
card(A) + card(B)− card(A⊕B)

card(A⊕B)
(3.6)

The function card(.) can have a crisp behavior counting the number di�er-
ent tokens in the multi-token string. This function has to satis�es two basic
properties:

card(a1, a2, ..., an) = 1, if (a1 = a2 = ... = an) (3.7)

card(a1, a2, ..., an) = n, if (a1 6= a2 6= ... 6= an) (3.8)

card(a1) = 1 (3.9)

Intuitively, a soft-version of the function card(.) for sets of tokens could
consider the similarity between tokens to estimate their cardinality. For in-
stance, the cardinality of a set of tokens with high similarity among them
(e.g.{�Jimenez�, �Gimenez�, �Jimenes�}) should be closer to 1 than to 3. In
the other hand, if the tokens have low similarity among them (e.g. {�giveaway�,
�girlfriend�, �gingerbread�}) should be closer to 3 (i.e. n). In fact, tokens that
do not share characters among them (e.g. {�Bush�, �Clinton�, �Kerry�}) the
cardinality should be exactly 3. Therefore, a soft-version of the function card(.)
would depend on the pairwise similarities of the tokens.

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 47

Table 3.3: Token pairwise similarities with edit-distance-based similarity mea-
sure for �Sergio Sergio Sergio�

Sergio Sergio Sergio

Sergio 1 1 1
Sergio 1 1 1
Sergio 1 1 1

Table 3.4: Token pairwise similarities with edit-distance-based similarity mea-
sure for �Jimenez Gimenez Jimenez�

Jimenez Gimenez Jimenes

Jimenez 1 0.8571 0.8571
Gimenez 0.8571 1 0.7143
Jimenes 0.8571 0.7143 1

Lets consider the following three cardinality functions where sim(ai, aj) is a
similarity measure between ai and aj , normalized in the range [0,1]:

cardA(a1, a2, ..., an) =
n∑
i=1

[
1∑n

j=1 sim(ai, aj)

]
(3.10)

cardB(a1, a2, ..., an) = 1 +
1
n

n∑
i=1

n∑
j=1

sim(ai, aj) (3.11)

The time complexity of both cardA(.) and cardB(.) is O(n2). In order to use
some resemblance coe�cient to compare two multi-token strings A and B with
m and n tokens respectively, it is necessary to compute card(A), card(B) and
card(A ⊕ B). The total time complexity of compute the three cardinalities is
O((m+ n)2) multiplied by the time complexity of the function sim(a, b). Note
that the cardA(.) function reproduces the behavior of the standard cardinality
in the classic set theory when the internal function sim(ai, aj) is a crisp string
comparator.

Now, lets consider some examples. In tables 3.3, 3.4, 3.5 and 3.6 the token
pairwise character-based similarities measured with the standard edit-distance
are shown for the following sample strings: �Sergio Sergio Sergio�, �Jimenez
Gimenez Jimenes�, �giveaway girlfriend gingerbread� and �Bush Clinton Kerry�.

Now, the table 3.7 shows the calculations of the three proposed cardinality
functions in equations 3.10 and 3.11.

The proposed concept of cardinality in set of tokens is similar to the size of
the compressed object information information used in the Compression Dis-
tance (see sub-section 3.2.1.5). In fact, the function card(.) can be viewed
as an estimation of the size of the compressed information within the string.
Now consider the following example comparing two multi-token strings with the

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 48

Table 3.5: Token pairwise similarities with edit-distance-based similarity mea-
sure for �giveaway girlfriend gingerbread�

giveaway girlfriend gingerbread

giveaway 1 0.1999 0.3636
girlfriend 0.1999 1 0.4545

gingerbread 0.3636 0.4545 1

Table 3.6: Token pairwise similarities with edit-distance-based similarity mea-
sure for �Bush Clinton Kerry�

Bush Clinton Kerry

Bush 1 0 0
Clinton 0 1 0
Kerry 0 0 1

Table 3.7: Examples of cardinality estimation with functions cardA(.) and
cardB(.).

Multi-token string example cardA cardB

�Sergio Sergio Sergio� 1 1
�Jimenez Gimenez Jimenes� 1.1462 1.3809

�giveaway girlfriend gingerbread� 1.7939 2.3212
�Bush Clinton Kerry� 3 3

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 49

Dice coe�cient, the cardinality function cardA(.) and edit-distance as internal
character-level similarity measure:

A =�Jimenez Vargas Sergio Gonzalo�

B =�Sergio Gonzalez Gimenez V.�

cardA(A)= 3.132616487

cardA(B) =3.454545455

cardA(A⊕B)=3.867153978

Dice(A,B) = 2×(cardA(A)+cardA(B)−cardA(A⊕B))
cardA(A)+cardA(B)

Dice(A,B) = 0.825851251

The combination approaches previously presented (i.e. Monge-Elkan and To-
ken Edit-Distance) that returns a measure of comparison between to multi-token
strings A and B, uses the internal sim(a, b) function only to compare tokens
belonging to A and B. Tokens belonging to the same string never are being
compared. In the same way, the character-level measures only make compar-
isons between the characters of both strings. The method proposed in this
section �rstly compares the tokens of each string between them when card(A)
and card(B) are computed. Further, the combination of the pairwise compar-
ison of the tokens of A ⊕ B is used to compute card(A ⊕ B). This additional
information have not been used in the past, the question to be answered is:
can this information increase the performance of a string measure in a string
matching problem?

The most similar approach to ours have been proposed recently by Michelson
and Knoblock [58]. They combined the Dice coe�cient 2× |A ∩B|/(|A|+ |B|)
with the Jaro-Winkler measure (see section 3.2.1.2) in order to compare two
multi-token strings A and B. Michelson and Knoblock established a threshold
θinternal for the Jaro-Winkler measure. Next, two tokens are put into the inter-
section A∩B if those two tokens have a Jaro-Winkler similarity above θinternal.
This approach has the same drawback of the soft TD-IDF [25], which is the ne-
cessity of a second threshold for the internal measure additional to the threshold
that is required for the combined method in order to decide the matching.

3.6 Experimental Evaluation

The aim of this section is to compare the performance of a set of character-
level string similarity measures compared with new measures obtained from the
combination of a character-level measure with some token-level measure. This
comparison aims to answer the following question: is it better to tokenize (i.e.
separate into words) the text strings and treat them as sequences of tokens
compared with to treat the text strings as simple sequences of characters?

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 50

Table 3.8: Data-sets used to carry out experiments.
Name #records |rel1| |rel2| |rel1| × |rel2| #matches #tokens

Birds-Scott1∗2 38 15 23 345 15 122
Birds-Scott2∗ 719 155 564 87,420 155 3,215
Birds-Kunkel∗ 336 19 315 5,985 19 1,302
Birds-Nybird∗ 985 67 918 61,506 54 1,957
Business∗ 2,139 976 1,163 1,135,088 296 6,275

Game-Demos∗ 911 113 768 86,784 49 3,263
Parks∗ 654 258 396 102,168 250 2,119

Restaurants∗ 863 331 532 176,062 112 9,125
UCD-people∗ 90 45 45 2,025 45 275
Animals∗ 1,378 689 689 474,721 327 3,436
Hotels3 1,257 1,125 132 148,500 1,028 9,094
Census4 841 449 392 176,008 327 4,083

Additionally, the new combination methods presented in sections 3.4 and 3.5
will be compared with two popular combination methods in order to assess the
value of those new approaches.

3.6.1 Experimental Setup

The comparison of the performance of various character- and token-level string
comparison measures has been made in the past on the name matching task
[25, 21, 73, 12]. The name matching task consist of compare two multi-token
strings that contains names, addresses, telephones and other information, and
decide if the pair of strings refers to the same entity of not.

3.6.1.1 Data-sets

The data-sets for string matching are usually divided in two relations. A speci�c
subset of the Cartesian product of those two relations is the set of valid matches.
The table 3.8 describes the 12 used data-sets with the total number of strings,
how those strings are divided in the two relations (rel1 and rel2), the number
of pair that are valid matches (set of valid matches) the size of the Cartesian
product of the relations and the total number of tokens. The Animal data-set
was not originally separated in two relations. The relations were obtained using
the 327 valid matches and the 689 strings involved in those matches.

The tokenizing process was made using as token (word) separator the fol-
lowing characters: space, `(', `)', `=', `-', `/ ',coma , `;' and `:'. Additionally, all
consecutive double token separators were withdrew and all heading and trailing
blank spaces were removed. The number of tokens obtained with this tokeniz-
ing policy in each data-set is reported in the last column in Table 3.8. Finally,
all characters are converted to uppercase characters and some characters with
french accents were replaced with their equivalent characters without accent. In

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 51

Table 3.9: Data-set sample matches.
Data-set(rel#) Sample String

Birds-Scott1(1) �Great Blue Heron�
Birds-Scott1(2) �Heron: Great blue (Grand Héron) Ardea herodias�
Birds-Scott2(1) �King Rail Rallus elegans�
Birds-Scott2(2) �Rail: King (Rale élégant) Rallus elegans�
Birds-Kunkel(1) �Eastern Towhee�
Birds-Kunkel(2) �Rufous-sided towhee (Pipilo erythrophthalmus)�
Birds-Nybird(1) �Yellow-rumped Warbler�
Birds-Nybird(2) �Yellow-rumped (�Myrtle�) Warbler�
Business(1) �BBN Corporation�
Business(2) �BOLT BERANEK & NEWMAN INC�

Game-Demos(1) �Learning in Toyland�
Game-Demos(2) �Fisher-Price Learning in Toyland�

Parks(1) �Timucuan Ecol. & Hist. Preserve�
Parks(2) �Timucuan Ecological and Historic Preserve�

Restaurants(1) �Shun Lee West 43 W. 65th St. New York 212/371-8844 Asian�
Restaurants(2) �Shun Lee Palace 155 E. 55th St. New York City 212-371-8844 Chinese�
UCD-people(1) �Barragry, Thomas B.�
UCD-people(2) �Dr. Thomas B. Barragry�
Animals(2) �Amargosa pup�sh�
Animals(2) �Pup�sh, Ash Meadows Amargosa�
Hotels(1) �3* Four Points Sheraton Airport 3/13 $30�
Hotels(2) �Four Points Barcelo by Sheraton Pittsburgh 3* Airport PIT�
Census(1) �GASBARRO PABLOS U 401 VILLAGRANDE�
Census(2) �GASBARRD PABLO V 401 VILLAGRANDE�

table 3.9for the sake of illustration a sample strings (in some cases hard-to-match
strings) is shown for each data-set.

3.6.1.2 Experimental Setup

Experiments were carried out comparing the full Cartesian product between
the relations rel1 and rel2 without using any blocking strategy. This is a time-
consuming approach but give us the complete elements to compare the per-
formance of di�erent matching techniques. The baseline experiments consist of
use a character-based string measure (e.g. edit-distance, 2-grams, Jaro-distance)
and compare the full length strings with the measure. In order to perform a
fairer comparison, the baseline experiments were not carried out with the orig-
inal strings but with the tokenized string re-joined with the character space as
only separator. The string metrics used in the baseline experiments are shown
with its names as follows:

1. exactMatch: It compares two strings returning 1 if are identical and 0 if

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 52

not.

2. ed.Dist: It returns the a normalized similarity using the expression: 1 −
edit−distance(A,B)

max(|A|,|B|) . The edit-distance used the three basic edit operations
(i.e. insertion, deletion and replacement) at cost 1.

3. Jaro: It returns the Jaro-distance metric explained in sub-section 3.2.1.2
that is in fact a similarity measure.

4. 2grams: It returns the ratio #commonBigrams(A,B)
max(|A|,|B|) . The common bi-grams

were counted considering padding characters as it was explained in sub-
section 3.2.1.3.

The previously listed measures will also be used as internal similarity measure
sim(a, b) in several token combination methods. The �rst set of combination
methods are listed next.

1. SimpleStr.: Not combination at all, only compares the strings with the
internal sim(a, b) measure.

2. MongeElkan: The combination method proposed by Monge and Elkan
using equation 3.1 (means m = 1).

3. MongeElkan0 : Extension to the basic Monge-Elkan method with exponent
m = 0.00001 in equation 3.4.

4. MongeElkan0.5 : Extension to the basic Monge-Elkan method with expo-
nent m = 0.5 in equation 3.4.

5. MongeElkan1.5 : Extension to the basic Monge-Elkan method with expo-
nent m = 1.5 in equation 3.4.

6. MongeElkan2 : Extension to the basic Monge-Elkan method with exponent
m = 2 in equation 3.4.

7. MongeElkan5 : Extension to the basic Monge-Elkan method with exponent
m = 5 in equation 3.4.

8. MongeElkan10 : Extension to the basic Monge-Elkan method with expo-
nent m = 10 in equation 3.4.

9. max_max : Equivalent to the extension of Monge-Elkan method withm→
∞, i.e. simmax(a, b) = max|a|i=1 max|b|j=1 sim(ai, bj).

10. TokenEd.Dist : The edit-distance metric at token-level where the token
replacement cost is sim(a, b) and insertion an deletion cost are set at 1.

Additionally to the �rst set of combination methods, a second set with re-
semblance coe�cients using the soft text cardinalities cardA(.) and cardB(.)
(equations 3.10 and 3.11 respectively) are listed and explained in table 3.10.

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 53

Table 3.10: Second set of character-/Token-level combination methods based in
cardinality

Name Description

11 Jaccard card(A∩B)
card(A∪B)

12 Dice 2×card(A∩B)
card(A)+card(B)

13 cosine card(A∩B)√
card(A)×card(B)

14 Sorensen 2×card(A∩B)
card(A∪B)+card(A∩B)

15 compression card(A∪B)−min(card(A),card(B))
max(card(A),card(B))

16 overlap card(A∩B)
min(card(A),card(B))

17 R1 card(A∩B)
max(card(A),card(B))

18 R8 max(card(A),card(B))
card(A∪B)

19 R12 min(card(A),card(B))
card(A∪B)

The total number of combination strategies at token level are the addi-
tion of the 10 methods previously listed plus the 9 cardinality-based methods
in table 3.10. The 9 cardinality-based methods were used with the two car-
dinality functions cardA(.) and cardB(.) (see equations 3.10and 3.11), that is
28 token combination methods in total. Those 28 token-based methods were
combined with the four character-based measures in table ?? for a total of 112
multi-token comparison measures. Each combination will be referred using the
names before their de�nitions ant the column Name in table 3.10. The format
of the combined method names is name_of_character_level_metric (hyphen)
name_of_token_level_metric (cardinality_function). For instance, a method
that uses the edit-distance as internal inter-token measure and the overlap coef-
�cient with the cardinality function cardB(.) is referred as �ed.dist.-overlap(B)�.
The combination methods in table ?? are referred without the su�x �(A)� of
�(B)�.

We de�ne an experiment as a pair {string_matching_method, data-set}.
The total number of experiments carried out is the test of all the 112 string
matching combined methods in the 12 proposed data-sets, that is 1344 exper-
iments. For each experiment, the string similarity measure is computed and
stored for each pair strings in the Cartesian product of the two relations of
the data-set. All computed similarities were in the range [0,1] having 1 as the
maximum level of similarity and 0 as the maximum dis-similarity.

3.6.1.3 Experiments Performance Measure

The matching problem between two relations (sets) can be viewed as a classi-
�cation problem over the Cartesian product of the sets where a subset of this
Cartesian product is the set of valid matches (i.e. positives) and its comple-
ment are non-valid matches (i.e. negatives). For each experiment, a similarity

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 54

measure value in the range [0,1] is computed for each possible string pair in a
data-set. However, in order to decide if a pair is a valid match it is necessary to
establish a threshold θ. Similarity values greater than or equal to θ are labeled
as positive and as negative in the alternative case. For a speci�c value of θ it is
possible to de�ne:

True Positive: a string pair in the set of valid matches labeled as positive.

False Positive: a string pair NOT in the set of valid matches labeled as neg-
ative.

False Negative: a string pair in the set of valid matches labeled as negative.

The classi�cation performance in two-class problems are usually measured using
precision, recall and F-measure that is the harmonic mean between precision
and recall.

precision =
#true positives

#true positives+ #false positives

recall =
#true positives

#true positives+ #false negatives

F −measure =
2× precision× recall
(precision+ recall)

For each experiment (i.e. a pair {string_matching_method, data-set}) the
counting of true positives, false positives and false negatives were made ranging
θ form 0 to 1 in steps of 0.01. Consequently, for each experiment varying θ,
101 values of precision, recall and F-measure are obtained. The graph shown
in �gure 3.2 plots the data obtained for the experiment {ed.Dist.-Cosine(A)
,Business}. The graph also shows the trade-o� between precision and recall
varying the similarity threshold θ. Recall has decreasing tendency whereas
precision is increasing. The maximum value of the F-measure known as F1-score
is obtained in the threshold θ with the best balance between precision and recall.
F1-score can also be seen as a general performance measure of the experiment.
The F1-score are closer to the point where the curves of precision and recall
intersect, that is in fact another general performance measure. However, the
F1-score measure is used more commonly.

The same data can be used to plot a precision-recall curve. The �gure 3.3
shows precision-recall curve obtained from the experiment {ed.Dist.-Cosine(A)
,Business}. Using this curve it is possible to obtain another general performance
measure called interpolated average precision (IAP) which is commonly used in
information retrieval problems [6]. One method to compute the IAP measure
is interpolate the precision-recall curve at 11 evenly separated recall points (i.e.
0.0, 0.1, 0.2, ...,1.0}. Interpolated precision at recall point r is the maximum

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 55

Figure 3.2: Precision, recall and F-measure vs. threshold curves for the experi-
ment {ed.Dist.-Cosine(A) ,Business}.

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

similarity threshold

recall precision F-measure

Figure 3.3: Precision-recall curve for the experiment {ed.Dist.-Cosine(A) ,Busi-
ness}.

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

recall

p
re

ci
si

o
n

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 56

Figure 3.4: Interpolated precision-recall curve at 11 evenly separated recall
points

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

recall

p
re

ci
si

o
n

precision obtained at any point with recall greater than or equal to r. Figure
3.4 shows an interpolated version of the curve in �gure 3.3 using the described
procedure.

The are under the the interpolated precision-recall curve is a general perfor-
mance measure of the experiment. Consider a classi�er that obtains a precision
and recall values of 1 at some θ. The interpolated precision-recall curve becomes
a step (i.e. 1 × 1 square) with its vertex at the point (1,1). The area under
that curve is 1 corresponding to the maximum possible performance. In order
to compute that area under the curve the 11 evenly separated precision values
are averaged. The measure obtained is known as interpolated average precision
(IAP). The IAP re�ects the general performance of the matching measure but
not the performance of the matching task. The later depends of the selected
threshold θ, which is unknown. We are interested in to measure the performance
of the matching method. Clearly, the better the performance of the matching
method, the better the performance of the matching task at reasonable θ values.

The IAP were selected as the primary performance measure since its graph-
ical interpretation (area under the curve) that make it more convenient for
operations of aggregation such as the average. For instance, in order to report
in only one number the performance of one of the 112 matching methods, its
values of IAP obtained for the 12 data-sets are averaged and reported with the
name avg. IAP.

3.6.1.4 Statistical Test

For each one of the tested 112 matching methods the average IAP over the 12
data-set is a performance measure. Given any pair of matching methods m1

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 57

and m2, if the average IAP obtained in m1 is greater than the one of m2, is it
possible to say that m1 outperforms m2? In order to answer this question the
Wilcoxon Matched Pairs Signed-Ranks Test [91]was used.

The Wilcoxon rank-sum test is a nonparametric alternative to the two sam-
ple t-test. The term non-parametric generally means that there is no assumption
that the underlying population has a Normal distribution. This test evaluates
whether or not the median of two paired samples are the same (H0 null hypoth-
esis). We are interested in a one tailed test, where the alternative hypothesis is
that the median of the results of m1 is greater than the results of m2.

The assumptions required by the test is that the results obtained with the
methods m1 and m2 have identical distributions. If the pairs are assumed to
have identical distributions, their di�erences should always have a symmetrical
distribution that is in fact the more important assumption of the test. Also, it
is required that the sample has been randomly chosen from the population (he
sample in our case is the 12 used data-sets). Additionally, this test requires no
assumption that you had large samples.

The procedure to perform the test is the following one:

1. Calculate the di�erence between each pair of results from the sample.

2. Ignore the zero di�erences (we ignored di�erences lower than 0.0001).
Clearly ignored di�erences reduces the size of the sample n.

3. Rank the absolute values of the remaining di�erences. If there are identical
di�erences average their ranks.

4. Sum the ranks of the positive di�erences, W+ , and sum the ranks of the
negative di�erences W−.

5. Compare the test statistics W− and compare with the critical values in
the tables. If W− is lower than or equal to the critical value for n in table
3.11, then reject the null hypothesis.

The critical values used for the Wilcoxon test statistic W for di�erent sample
sizes n are show in table 3.11.

Now, lets consider the results of the experiments for the methods 2gram-
MongeElkan2 and 2gram-compress(C) shown in the �rst three columns in table
3.12. The value of the test statisticW− is 4, the critical value for n = 12 in table
3.11 with a signi�cance of 2.5% is 14. Thus, the null hypothesis is rejected and
the evidence shows, at the 2.5% signi�cance level, that the matching method
2gram-MongeElkan2 outperforms 2gram-compress(C).

Another example comparing 2gram-MongeElkan2 and 2gram-compress(C)
is shown in table 3.13. The value of the test statistic W− is 28 and the critical
value is 14 at the signi�cance level of 2.5%. Thus, the null hypothesis is accepted
and although the value of the average IAP is greater for 2gram-MongeElkan2
there is not enough statistical evidence to a�rm that this method outperforms
2gram-compress(A).

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 58

Table 3.11: Critical values for the Wilcoxon test statistic for one-tailed test.
Signi�cance

n 10.0% 5.0% 2.5%
5 2 1 -
6 3 3 1
7 5 4 3
8 8 6 4
9 11 9 6
10 13 11 9
11 17 14 11
12 21 18 14
13 26 22 17
14 31 26 18
15 36 31 22

Table 3.12: IAP Wilcoxon sign test for experiments 2gram-MongeElkan2
(method1) and 2gram-compress(C)(method2)

Data-set method1 method2 di�. rank W+ W−

Birds-Nybirds 0.694809 0.674526 0.020283 1 1 -
Game-Demos 0.541242 0.491103 0.050139 2 2 -

Animals 0.128630 0.074987 0.053643 3 3 -
Census 0.652203 0.724021 -0.071818 4 - 4

Birds-Scott1 0.869519 0.781612 0.087907 5 5 -
Restaurants 0.891184 0.781859 0.109325 6 6 -
UCD-people 0.849196 0.697854 0.151343 7 7 -

Parks 0.839082 0.654155 0.184927 8 8 -
Birds-Scott2 0.877792 0.690973 0.186820 9 9 -

Hotels 0.551949 0.363171 0.188778 10 10 -
Birds-Kunkel 0.892562 0.697015 0.195547 11 11 -
Business 0.717120 0.498934 0.218186 12 12 -

AVERAGE 0.708774 0.594184
∑

74 4

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 59

Table 3.13: IAP Wilcoxon sign test for experiments 2gram-MongeElkan2
(method1) and 2gram-compress(A) (method2)

Data-set metthod1 method2 di�. rank W+ W−

Restaurants 0.891184 0.890231 0.000953 1 1 -
Birds-Scott1 0.869519 0.858471 0.011048 2 2 -

Parks 0.839082 0.851435 -0.012353 3 - 3
Birds-Nybird 0.694809 0.729448 -0.034639 4 - 4

Hotels 0.551949 0.508777 0.043172 5 5 -
Animals 0.128630 0.083351 0.045280 6 6 -
Business 0.717120 0.671056 0.046064 7 7 -

Birds-Scott2 0.877792 0.779647 0.098145 8 8 -
UCD-people 0.849196 0.738955 0.110241 9 9 -

Census 0.652203 0.806547 -0.154344 10 - 10
Game-Demos 0.541242 0.708952 -0.167709 11 - 11
Birds-Kunkel 0.892562 0.460259 0.432303 12 - 12
AVERAGE 0.708774 0.673927

∑
50 28

The Wilcoxon's test were performed to compare each one of the 112 matching
methods against the other 111 methods. For each method, the quotient of the
number of methods that outperformed it, divided by 111 was reported as the
Wilcoxon's Rate.

3.6.2 Results

3.6.2.1 General Ranking

The tables 3.14, 3.15 and 3.16 show an ordered list by avg. IAP with the results
obtained for each one of the 112 combination matching methods tested. The
avg. IAP values were obtained averaging the IAP results obtained in the 12
data-sets for each matching method. The column test shows the number of
times that the method statistically outperformed compared with the other 111
methods using the Wilcoxon's test. That is the number of accepted alternative
hypothesis that the median of the results obtained with the method is greater
than the median of the method with which it is being compared with signi�cance
of 5%. Finally, the last column shows the rate of passed statistical test divided
by the number of methods that the method outperformed. Namely:

Wilcoxon′sRate =
test

112− rank

It is important to note the obtained ranks by the baseline methods. That is
2gram, Jaro, ed.Dist. and exactMatch respectively: 19, 65, 70 and 97. The case
of the exactMatch (rank=97) comparison method is particular, which obtained
and IAP of 0.1835057 surpassing other 15 methods. However, as it was expected,
this method did not outperformed statistically other methods. The complete

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 60

rank list is reported for the sake of completeness and to give a general guide of
the �good� and the �not as good� method combinations.

3.6.2.2 Comparison versus Baselines and the MongeElkan Method

The baselines of ours experiments are four character-level measures comparing
pairs of multi-token strings as simple sequences of characters. The four measures
are: 2-grams, exact-match, edit-distance and Jaro-distance. The table 3.17
compares the results of the baseline methods with the procedure of separate the
string in tokens (words), compare the tokens with the Monge-Elkan method (see
equation 3.1) using as internal measure sim(a, b) the same baseline method. For
instance, the baseline result reported in the �rst row correspond to the method
2gram-simpleStr. and the column named MongeElkan correspond to the results
for the method 2gram-MongeElkan.

The four baseline measures combined with the Monge-Elkan method im-
proved the IAP compared with the baseline in all cases; the relative improve-
ment is reported in the last column. The columnW− shows the test statistic for
the one-tailed Wilcoxon's test. The critical value of W− for n = 12 with signif-
icance of 0.05 is 18 and approximately 21 with signi�cance of 0.1. So, the only
improvement with enough statistical evidence is the obtained with exactMatch-
MongeElkan versus exactMatch-simpleStr (starred with * in the table 3.17).
The Monge-Elkan combination method is considered by the string processing
community as one of the best static combination methods. However, the ob-
tained improvements there were not enough statistical evidence of consistency
in the sample of 12 data-sets. This result also shows that the Wilcoxon's test is
not as easy to pass even with a relative high signi�cance.

The results in table 3.18 have the same format as in table 3.17 but addition-
ally report in the column �Best Method� the name of the combination method
with the highest avg. IAP reached for each baseline measure. The starred with
one * and two ** mean that the Wilcoxon's test was passed with signi�cance of
0.05 and 0.1 respectively. Similarly, the baseline methods were compared with
the best methods for each baseline measure, the results are shown in table 3.19.

3.6.2.3 Results for Extended Monge-Elkan Method

The extension proposed for the Monge-Elkan method in the equation 3.4 were
tested for values of the exponent m in 0.00001, 0.5, 1.0 (standard MongeElkan),
1.5, 2.0, 5.0 and 10.0. The averaged IAP considering the 12 data-sets for each
internal character-level similarity measure is plotted in �gure 3.5. The average
of the four curves is shown in �gure 3.6. Additionally, the Wilcoxon's test was
used to compare the standard MongeElkan method (m = 1) versus the extended
method with exponentsm with the values of 1.5, 2.0 and 5.0. The aim of this test
is to establish if there are statistical evidence that if the standard MongeElkan
method is improved when the exponent m in the equation 3.4 is above 1. The
table 3.20 shows the results of the Wilcoxon's test statistic W−. The value of
n was 12 for all three comparisons, so the critical values for W− were 21 and

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 61

Table 3.14: General ranking for combined string matching methods. Part 1/3
rank method avg. IAP tests Wilcoxon's Rate

1 2gram-cosine(A) 0.739927 103 92.79%
2 2gram-Jaccard(A) 0.729502 94 85.45%
3 2gram-Dice(A) 0.728885 94 86.24%
4 2gram-Sorensen(A) 0.728885 94 87.04%
5 exactMatch-cosine(A) 0.714650 80 74.77%
6 2gram-MongeElkan1.5 0.710334 73 68.87%
7 2gram-MongeElkan2 0.708774 83 79.05%
8 exactMatch-Jaccard(A) 0.707249 75 72.12%
9 exactMatch-Sorensen(A) 0.707147 75 72.82%
10 exactMatch-Dice(A) 0.707147 75 73.53%
11 Jaro-MongeElkan5 0.704047 70 69.31%
12 ed.Dist.-MongeElkan2 0.703136 67 67.00%
13 2gram-MongeElkan 0.701698 70 70.71%
14 ed.Dist.-MongeElkan1.5 0.696779 69 70.41%
15 Jaro-MongeElkan10 0.694706 74 76.29%
16 ed.Dist.-MongeElkan5 0.689713 69 71.88%
17 2gram-overlap(A) 0.681110 57 60.00%
18 ed.Dist.-MongeElkan 0.678082 61 64.89%
19* 2gram-simpleStr. 0.677859 51 54.84%
20 2gram-MongeElkan5 0.677835 62 67.39%
21 exactMatch-compress(A) 0.674830 53 58.24%
22 exactMatch-R1(A) 0.674830 53 58.89%
23 2gram-compress(A) 0.673927 54 60.67%
24 2gram-R1(A) 0.673825 54 61.36%
25 exactMatch-overlap(A) 0.672695 54 62.07%
26 ed.Dist.-cosine(A) 0.672688 56 65.12%
27 Jaro-MongeElkan2 0.671519 57 67.06%
28 ed.Dist.-MongeElkan10 0.662875 56 66.67%
29 2gram-MongeElkan10 0.658941 54 65.06%
30 exactMatch-MongeElkan 0.658511 53 64.63%
31 exactMatch-MongeElkan2 0.658385 53 65.43%
32 exactMatch-MongeElkan0.5 0.657882 53 66.25%
33 exactMatch-MongeElkan1.5 0.657856 53 67.09%
34 exactMatch-MongeElkan5 0.657585 53 67.95%
35 exactMatch-MongeElkan10 0.656911 53 68.83%
36 ed.Dist.-Jaccard(A) 0.656911 49 64.47%
37 2gram-MongeElkan0.5 0.656879 50 66.67%
38 Jaro-MongeElkan1.5 0.656635 50 67.57%
39 ed.Dist.-Sorensen(A) 0.656062 49 67.12%
40 ed.Dist.-Dice(A) 0.656062 49 68.06%

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 62

Table 3.15: General ranking for combined string matching methods. Part 2/3
rank method avg. IAP tests Wilcoxon's Rate

41 Jaro-MongeElkan 0.636822 46 64.79%
42 ed.Dist.-MongeElkan0.5 0.635641 46 65.71%
43 2gram-cosine(B) 0.629773 42 60.87%
44 2gram-tokenEd.Dist. 0.629443 35 51.47%
45 2gram-R8(A) 0.628162 39 58.21%
46 2gram-Dice(B) 0.624980 42 63.64%
47 2gram-Sorensen(B) 0.624980 42 64.62%
48 exactMatch-cosine(B) 0.616827 42 65.63%
49 Jaro-MongeElkan0.5 0.616575 40 63.49%
50 2gram-Jaccard(B) 0.615958 39 62.90%
51 exactMatch-Sorensen(B) 0.613965 41 67.21%
52 exactMatch-Dice(B) 0.613965 41 68.33%
53 Jaro-MongeElkan0 0.610215 36 61.02%
54 exactMatch-overlap(B) 0.609747 39 67.24%
55 exactMatch-Jaccard(B) 0.600628 41 71.93%
56 2gram-overlap(B) 0.596793 39 69.64%
57 ed.Dist.-tokenEd.Dist. 0.594873 31 56.36%
58 ed.Dist.-MongeElkan0 0.594511 33 61.11%
59 2gram-R1(B) 0.594198 39 73.58%
60 2gram-compress(B) 0.594184 39 75.00%
61 exactMatch-compress(B) 0.592150 39 76.47%
62 exactMatch-R1(B) 0.591914 39 78.00%
63 exactMatch-R8(A) 0.591896 33 67.35%
64 exactMatch-tokenEd.Dist. 0.585316 31 64.58%
65* Jaro-simpleStr. 0.577744 31 65.96%
66 ed.Dist.-compress(A) 0.573967 32 69.57%
67 ed.Dist.-R1(A) 0.573967 32 71.11%
68 2gram-MongeElkan0 0.554194 30 68.18%
69 2gram-R14(A) 0.553339 32 74.42%
70* ed.Dist.-simpleStr. 0.550062 31 73.81%
71 ed.Dist.-cosine(B) 0.536572 31 75.61%
72 ed.Dist.-Sorensen(B) 0.536445 31 77.50%
73 ed.Dist.-Dice(B) 0.536445 31 79.49%
74 exactMatch-R14(A) 0.523569 30 78.95%
75 ed.Dist.-Jaccard(B) 0.518179 30 81.08%
76 ed.Dist.-R14(A) 0.516899 30 83.33%
77 ed.Dist.-R1(B) 0.512050 30 85.71%
78 ed.Dist.-compress(B) 0.511994 30 88.24%
79 ed.Dist.-overlap(B) 0.500791 26 78.79%
80 ed.Dist.-overlap(A) 0.466801 28 87.50%

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 63

Table 3.16: General ranking for combined string matching methods. Part 3/3
rank method avg. IAP tests Wilcoxon's Rate

81 ed.Dist.-R8(A) 0.450146 27 87.10%
82 Jaro-tokenEd.Dist. 0.427008 28 93.33%
83 2gram-R14(B) 0.341112 24 82.76%
84 exactMatch-MongeElkan0 0.334419 16 57.14%
85 ed.Dist.-R14(B) 0.317554 21 77.78%
86 exactMatch-R14(B) 0.304862 19 73.08%
87 Jaro-compress(A) 0.255566 15 60.00%
88 Jaro-R1(A) 0.255534 15 62.50%
89 Jaro-R14(A) 0.252449 14 60.87%
90 Jaro-Sorensen(B) 0.218827 16 72.73%
91 Jaro-Dice(B) 0.218827 16 76.19%
92 Jaro-cosine(B) 0.217471 15 75.00%
93 Jaro-Jaccard(B) 0.216095 15 78.95%
94 Jaro-R1(B) 0.206173 14 77.78%
95 Jaro-compress(B) 0.206171 14 82.35%
96 Jaro-R14(B) 0.185595 7 43.75%
97* exactMatch-simpleStr. 0.183505 0 0.00%
98 Jaro-overlap(B) 0.146254 11 78.57%
99 Jaro-Jaccard(A) 0.130602 8 61.54%
100 Jaro-Sorensen(A) 0.129052 6 50.00%
101 Jaro-Dice(A) 0.129052 6 54.55%
102 Jaro-cosine(A) 0.109623 3 30.00%
103 Jaro-max_max 0.101732 2 22.22%
104 2gram-max_max 0.101724 2 25.00%
105 ed.Dist.-max_max 0.101721 2 28.57%
106 exactMatch-max_max 0.101709 2 33.33%
107 exactMatch-R8(B) 0.064851 1 20.00%
108 2gram-R8(B) 0.061020 1 25.00%
109 ed.Dist.-R8(B) 0.060413 1 33.33%
110 Jaro-R8(B) 0.041945 0 0.00%
111 Jaro-overlap(A) 0.028704 1 100.00%
112 Jaro-R8(A) 0.028212 0 -

Table 3.17: Average IAP for baseline measures improved with MongeElkan
method.
sim(a, b) Baseline MongeElkan W− Improvement

2grams 0.677859(0.229198) 0.701698(0.227473) 33 3.52%
exactMatch 0.183505(0.274896) 0.658511(0.249272) 1* 258.85%
ed.Dist. 0.550062(0.296590) 0.678082(0.241435) 26 23.27%
Jaro 0.577744(0.289440) 0.636822(0.275805) 32 10.23%

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 64

Table 3.18: Average IAP for the Monge-Elkan combination method compared
with the best combination method.
sim(a, b) MongeElkan Best Method Best Method's avg.IAP W− Improv.

2grams 0.701698(0.227473) cosine(A) 0.739927(0.221174) 17* 5.45%
exactMatch 0.658511(0.249272) cosine(A) 0.714650(0.245442) 18* 8.53%
ed.Dist. 0.678082(0.241435) MongeElkan2 0.703136(0.224808) 19** 3.69%
Jaro 0.636822(0.275805) MongeElkan5 0.704047(0.224379) 18* 10.56%

Table 3.19: Average IAP for baseline measures improved with the best combi-
nation method.
sim(a, b) Baseline Best Method Best Method's avg.IAP W− Improv.

2grams 0.677859(0.229198) cosine(A) 0.739927(0.221174) 3* 9.16%
exactMatch 0.183505(0.274896) cosine(A) 0.714650(0.245442) 0* 289.44%
ed.Dist. 0.550062(0.296590) MongeElkan2 0.703136(0.224808) 21** 27.83%
Jaro 0.577744(0.289440) MongeElkan5 0.704047(0.224379) 24 21.86%

18 for signi�cance of 10% and 5%. The values that passed the Wilcoxon's text
were starred with one or two * given its signi�cance of 5% or 10% respectively.

3.6.2.4 Results of the New Cardinality-Based Methods

The presented results of this sub-section have the aim to assess the performance
of the di�erent tested resemblance coe�cients. Once again, the average of the
IAP results over the 12 data-sets and the four internal character-level string
similarity measures (48 experiments in total) is computed for each resemblance
coe�cient. The tables 3.21a and 3.21b report the avg. IAP obtained using solely
cardA(.) or cardB(.) respectively. The table 3.21 shows the same measure but
using both cardinality function averaging 96 experiments in total.

3.6.2.5 Results by Data-set

In order to allow comparison with past and future studies, the method with best
results obtained by data-set are reported in table 3.22 in the second and third
columns. The majority of the methods with the best results involve new methods

Table 3.20: Values of the Wilcoxon's test statistic W− comparing extended
Monge-Elkan method versus the standard Monge-Elkan method.
sim(a, b) W− MongeElkan1.5 W− MongeElkan2 W− MongeElkan5

2grams 15* 19** 42
exactMatch - - -
ed.Dist. 18* 20** 27
Jaro 5* 12* 12*

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 65

Figure 3.5: Average IAP behavior of the exponent m in extended Monge-Elkan
method for each internal character-level string similarity measures.

0.3

0.4

0.5

0.6

0.7

0.8

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

exponent m in Extended MongeElkan

A
v
er

ag
e

IA
P

2gram ed.Dist. exactMatch Jaro 1

Figure 3.6: Average IAP behavior of the exponent m in extended Monge-Elkan
method for all internal character-level string similarity measures (averaged).

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10

exponent m in Extended MongeElkan

A
v
er

ag
e

IA
P

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 66

Table 3.21: Ranks of resemblance coe�cients performance in string matching.
a) cardA(.)

rank token avg.IAP(A) std.dev.

1 cosine 0.559222 0.338731
2 Jaccard 0.556066 0.329359
3 Sorensen 0.555287 0.329435
4 Dice 0.555287 0.329435
5 compress 0.544573 0.286556
6 R1 0.544539 0.286581
7 overlap 0.462328 0.353293
8 R14 0.461564 0.267292
9 R8 0.424604 0.353888

b) cardB(.)
rank token avg.IAP(B) std.dev.

1 cosine 0.500161 0.278444
2 Sorensen 0.498554 0.273099
3 Dice 0.498554 0.273099
4 Jaccard 0.487715 0.266854
5 compress 0.476125 0.256401
6 R1 0.476084 0.256355
7 overlap 0.463396 0.316394
8 R14 0.287280 0.212362
9 R8 0.057057 0.085837

c) cardA(.) and cardB(.)
rank token avg.IAP(A&B) std.dev.

1 cosine 0.529691 0.309846
2 Sorensen 0.526920 0.302332
3 Dice 0.526920 0.302332
4 Jaccard 0.521890 0.300131
5 compress 0.510349 0.272641
6 R1 0.510311 0.272634
7 overlap 0.462862 0.333582
8 R14 0.374422 0.255601
9 R8 0.240831 0.315805

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 67

Table 3.22: Best matching methods by data-set.
Data-set 1st best method avg. IAP best baseline avg. IAP Improv.

Animals Jaro-MongeElkan1.5 0.129343 2gram 0.066294 95.11%
Birds-Kunkel 2gram-MongeElkan2 0.892562 Jaro 0.773828 15.34%
Birds-Nybirds ed.Dist.-cosine(A) 0.734960 2gram 0.714876 2.81%
Birds-Scott1 exactMatch-cosine(A) 0.889610 2gram 0.848485 4.85%
Birds-Scott2 exactMatch-R8(A) 0.909091 ed.Dist. 0.869423 4.56%
Business 2gram-tokenEd.Dist. 0.731611 Jaro 0.678614 7.81%
Census ed.Dist. 0.859146 ed.Dist. 0.859146 -
Demos 2gram-cosine(A) 0.775548 Jaro 0.725928 6.84%
Hotels exactMatch-cosine(A) 0.722460 2gram 0.610279 18.38%
Parks Jaro 0.888874 Jaro 0.888874 -

Restaurants exactMatch-Sorensen(A) 0.905571 Jaro 0.890970 1.64%
Ucd-people exactMatch-cosine(A) 0.909091 2gram 0.796911 14.08%

or extended methods proposed in this thesis or combinations not previously
testes in the past. Those best results were compared with the baseline method
that obtained the best avg. IAP. Finally the relative improvement compared
with the baseline are shown in the last column.

3.7 Conclusions

The �nal rank obtained from all the experiments (shown in tables 3.14, 3.15 and
3.16) shows and simultaneously hides information. Lets make an analogy be-
tween this ranking and the results of an athletic race. The four character-based
metrics (2gram, ed.Dist., Jaro and exactMatch) could be the nationalities of the
competitors and the 28 combination methods could be performance-enhancing
drugs (simpleStr. would correspond to fair competitors). The four fair com-
petitors arrived at positions 19, 65, 70 and 97 between 112 participants. This
bare result would show that doping methods clearly enhanced the performance
of the athletes. However, the order in the rank list not necessarily re�ected the
performance of the athletes or the drugs. Consider the ranks 6 and 7, 2gram-
MongeElkan1.5 reached a higher avg. IAP than 2gram-MongeElkan2 but had
considerably less statistical evidence of its performance. Nevertheless, the �win-
ner�, 2gram-cosine(A), had also the highest statistical evidence.

The rank analysis is based in a comparison all-against-all and do not re-
�ects a fair comparison against baselines. The tables 3.17, 3.18 and 3.19 showed
speci�c comparisons against baseline measures. Additionally, the MongeElkan
method was used as combination method baseline. We can conclude from those
tables that both baselines (at character-level and at token-level) were outper-
formed. Even better the improvements obtained with the methods cosine(A),
MongeElkan2 and MongeElkan5 reached improvements statistically more con-
sistent than the basic MongeElkan method. Those results showed clearly that

CHAPTER 3. STATIC FUZZY STRING SEARCHING IN TEXT 68

to treat text strings as sequences of tokens instead of character sequences has
an important gain.

The conclusions that can be extracted from the empirical results are sum-
marized as follows:

� The cardinality function cardA(.) seems to be a good estimator of the
�soft-cardinality� or �the size of the compressed information� of a set of
words. Thus, this function in combination with resemblance coe�cients
provides a convenient general method for text string comparisons.

� The resemblance coe�cients that have in their numerator the cardinality
of the intersection of the tokens such as cosine, Jaccard, Sorensen and
Dice seems to be suitable to the comparison of sets of words. Particularly,
the cosine coe�cient reached the best results and it had a good and con-
sistent behavior. To the best of our knowledge, cosine have not used as
resemblance coe�cient in the past in the string matching task.

� The use of the generalized mean instead of the arithmetic mean in the
MongeElkan measure seems to improve consistently the performance of
the basic method when the exponent m is greater than 1 (equation 3.4).

Chapter 4

Knowledge-based Word Sense

Disambiguation Methods for

Term Disambiguation

In chapter 2 the laptop ontology, lexicon and corpus were presented, and in
chapter 3 existing and new proposed techniques to approximately match the
lexicon entries against the document corpus were compared. As a result, lexicon
terms were identi�ed in the token sequence of the documents in the corpus.
However, a new problem rises: ambiguity.

The �rst source of ambiguity is homoymy in the lexicon. As it was showed
in table 2.7, a term in the lexicon can be linked to di�erent concepts. For
instance, the acronym term �MB� can be linked to the terms �MegaByte� and
�MotherBoard�. In section 2.3 we concluded that the 17.06% of the terms in the
lexicon have this kind of ambiguity.

The second ambiguity source is the morphological similarity. This ambiguity
is originated by the fact that if an approximate string comparison technique is
used to compare two �similar� strings, then they can be considered as equals.
For instance, if the terms that are being compared with the edit distance using
a threshold θ = 0.75, strings such as �Blue-ray� and �Blue gray� are considered a
valid match even though the former is an optical disk technology and the former
is a laptop exterior color. However, it is expected that the use of approximate
string comparison techniques provides resilience against noise (misspellings, ty-
pos, OCR errors and morphological variations) to the �nal extraction process.
The trade-o� between the morphological ambiguity and the resilience originated
by the approximate string comparison is going to be studied in this chapter.

Two elements are going to be used in order to deal with the two mentioned
sources of ambiguity: i) the context in which the ambiguous term is used and ii)
the information contained in the laptop ontology. However, unfortunately the
very laptop ontology adds a third source of ambiguity that is the use ambiguity.
The use ambiguity is originated by the fact that the ontology is designed as a

69

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION70

directed acyclic graph (DAG) instead of being a tree. Nevertheless, this property
in ontology design allows that a concept can be reused. For instance, if the term
�MB� (linked to the conceptMegaByte) is found in a document, it is not possible
(without considering additional information) to determine if it is referring to the
memory units of the laptop main memory or the cache memory. This ambiguity
had brie�y outlined in section 2.4 when the possibles semantic paths where
considered for labeling a sample of a document sequence. The �gure 2.5 showed
that the 58.47% of the terminal nodes in the laptop ontology have this kind of
ambiguity.

As a consequence of the previously discussed sources of ambiguity, the token
sequences in the document corpus can have many semantic interpretations. We
noticed that this problem is similar to the word sense disambiguation (WSD)
problem in the natural language processing (NLP) �eld. Besides, a particular set
of approaches to address WSD in natural language text uses a general lexicalized
ontology called WordNet [62]. WordNet is structurally similar to our laptop on-
tology and lexicon. Thus, we proposed a solution to our information extraction
problem similar to the WSD solutions that uses WordNet as disambiguation
resource.

This chapter is organized as follows. In section 4.1 di�erent approaches to
the problem of provide comparison measure between concepts in ontologies are
reviewed. The relevant WSD approaches for our disambiguation problem are
reviewed in section 4.2. The proposed disambiguation method for our speci�c
information extraction problem is presented in section 5. Additionally, this
section presents the �nal information extractor integrated with the approximate
string comparison techniques studied in chapter 3. The experimental evaluation
of the proposed system using the laptop ontology, lexicon and corpus is presented
in section 5.5. In addition to the experiments carried out with the laptop lexicon,
new synthetical lexicons were generated adding noise to the original lexicon in
order to evaluate the robustness of the system. Finally, in section 5.6 some
concluding remarks are made.

4.1 Semantic Relatedness

Semantic relatedness (SR) is a general level of association between two con-
cepts [72]. For instance, there is an intuitive notion that VideoAdapter and
Display are semantically closer compared with the relatedness between Battery
and Speakers concepts. The SR measures between concepts are the base of many
WSD algorithms because they provide information to evaluate the coherence of
a discourse.

Semantic similarity is a less general concept compared with SR, because it is
de�ned as a measure for semantic networks connected only with a single type of
relationships (usually �is-a� hierarchies). Due to the fact, that the laptop ontol-
ogy was built mainly with one type of relationships, we do not make distinctions
between the SR and semantic similarity measures.

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION71

4.1.1 Graph-based Semantic Relatedness Measures

The simplest SR measure in ontology graphs (or semantic networks) is path
length [77], i.e. the number of edges in the shortest path between two concepts
(see �gure 4.1).

However, the path length metric can generate misleading results because of
in practice, pairs of concepts closer to the ontology root tend to be less related
than entities closer to leaves. In order to lessen this situation, Leacock and
Chodorow [51] proposed the equation 4.1 where D is the total ontology graph
height.

SIMLeacock&Chodorow(a, b) = − log
(
pathLength(a, b)

2D

)
(4.1)

Another approach to the same problem has been proposed byWu and Palmer
[93] using the concept of lowest common subsumer (LCS), i.e. the more distant
concept from the root, common to two concepts. LCS is also known as lowest
common ancestor, lowest super-ordinate and most informative subsumer. For
instance, in �gure 4.1 Processor is the LCS of Brand and GHz . The Wu&Palmer
measure is given the equation 4.2, where the function depth(x) represents the
number of edges from the concept x to the root concept.

SIMWu&Palmer(a, b) =
2.depth(lcs(a, b))

pathLength(a, b) + 2.depth(lcs(a, b))
(4.2)

The path length measure can be written using the LCS and depth(x) func-
tions with the following expression:

SIMpathLenght(a, b) = depth(a) + depth(b)− 2.lcs(a, b)

Recently Altinas et al. [3] proposed a SR measure combining the �abstract-
ness� of the LCS concept and �concreteness� of the concepts being compared.
Alintas et al. measure reached the highest F-measure (i.e. harmonic mean be-
tween precision and recall) compared with previously presented metrics in the
noun word sense disambiguation task of Senseval-21.

Altinas et al. [3] proposed a measure combining the concepts of abstractness
and concreteness using the following expressions:

LenFactor(a, b) =
pathLength(a, b)

2.D

Spec(x) =
depth(x)

clusterDepth(x)

SpecFactor(a, b) = |Spec(a)− Spec(b)|
1http://www.senseval.org/

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION72

Figure 4.1: Path length semantic relatedness example in a �has-part�/�has-
attribute" hierarchy .

Brand

MHzDecimalReal GHz

Laptop

Processor

ProductID

Family

Frequency Magnitude

Model

Speed

Frequency

Frequency Units

Cache FSB BusWidth

Memory HardDisk ...

...

...

...

...

1

2
3

4

5

6

SIMAltinas(a, b) =
1

1 + LenFactor(a, b) + SpecFactor(a, b)

The function clusterDepth(x) returns the depth of the deepest node in a
cluster of WordNet concepts.

Another approach was proposed by Stetina et al. [84]a semantic distance is
de�ned in the WordNet hypernymy hierarchy using the following expression:

sd(a, b) =
1
2
×
(
depth(a)− depth(lcs(a, b))

depth(a)
+
depth(b)− depth(lcs(a, b))

depth(b)

)
Further, the semantic distance is converted in a semantic similarity using

the equation 4.3. The similarity is squared in the following formula in order to
report higher values to semantically closer terms.

SIMStetina(a, b) = 1− sd(a, b)2 (4.3)

Sussna [85] proposed a semantic relatedness measure using all types of rela-
tionships in the WordNet [62]semantic network (i.e. synonymy, hypernymy, hy-
ponymy, holonymy, meronymy and antonymy). The Sussna's measure between
two concepts consist in the shortest path using weighed edges according to a
type-speci�c fanout (TSF) factor scaled with the depth of the deeper concept in
the hierarchy. The TSF factor re�ects the strength of the relation between two
adjacent nodes in the semantic network related with the number of like relations
that the source node has. For instance the weight of the edge in the meronymy
relation between Processor and Laptop is inverse to the number of meronymy
relations between Laptop and other concepts. Similarly, the weight for inverse
relation (i.e. holonymy between Laptop and Processor) is obtained in the same
way. Both values are averaged and scaled obtaining the undirected edge weight
as is shown in the following expression.

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION73

weight(a, b) =
w(a→r b) + w(b→r′ a)

2d

w(x→r y) = maxr −
maxr −minr

nr (x)

Where a and b are concepts in the hierarchy,→ris a relation of type r, →r′

is its inverse, d is the depth of the deeper of the two nodes, maxrand minrare
the range of possible weights for a relation of type r, and nr(X) is the number
of relations of type r having x as source node. Sussna assigned maxr = 2 and
minr = 1 for all relation types except antonymy whose range was (2.5, 2.5) i.e.
no range.

Agirre and Rigau [2] proposed a conceptual distance using not only the path
length between concepts and their depth in the hierarchy, but adding the density
of terms in the hierarchy as evidence. They argue that concepts in a dense part
of the hierarchy are relatively closer than those in a more sparse region.

Maynard and Ananiadou [56] proposed another similarity measure and ap-
plied it in the biomedical UMLS2 ontology.

SIMMaynard&Ananiadou(a, b) =
2.depth(lcs(a, b))
depth(a) + depth(b)

4.1.2 Corpus-based Semantic Relatedness Measures

Another SR measures uses the concept of information content (IC) introduced
by Resnik [78].

IC(c) = −log(P (c)) (4.4)

In equation 4.4 P (c) is the probability of encountering an instance of the
concept c in some speci�c and large corpus. Using the IC concept is possible to
bring together the information of an ontology and a large corpus. The former
is considered a knowledge-rich source and the later a knowledge-poor source.
Budanitsky and Hirst [15] made a comparative study showing that semantic
relatedness measures that combines those sources have better results in WSD
task when a large corpus is available. The SR measure proposed by Resnik uses
the following expression:

SIMResnik(a, b) = IC(lcs(a, b))

Using the same IC concept, Jiang and Conrath [44], proposed the following
measure:

SIMJiang&Conrath(a, b) = IC(a) + IC(b)− 2 ∗ IC(lcs(a, b))

2http://www.nlm.nih.gov/research/umls/

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION74

Figure 4.2: Weighted path length semantic relatedness measure example.

Brand

MHzDecimalReal GHz

Laptop

Processor

ProductID

Family

Frequency Magnitude

Model

Speed

Frequency

Frequency Units

Cache FSB BusWidth

Memory HardDisk ...

...

...

...

...

...

w=1

w=2

w=3

w=4
w=4

w=3

WeightedPathLength(“Brand”,“GHz”)=3+4+4+3+2+1=17

Similarly, Lin [54]proposed the following SR metric:

SIMLin(a, b) =
2 ∗ IC(lcs(a, b))
IC(a) + IC(b)

4.1.3 A New Semantic Relatedness Measure

Leacock et. al and Wu & Palmer measures have extended the basic path length
metric (see �gure 4.1) following the idea that two concepts closer to the ontology
hierarchy root are semantically more distant than those that are farther. Using
that idea, we propose a weighted path length measure assigning weights to
edges according to its proximity to the root of the ontology tree. In �gure 4.2
an example of that metric is shown.

4.2 Knowledge-Based Word Sense Disambigua-
tion

Word sense disambiguation (WSD) is a natural language processing task that
aims to assign the correct sense to all polysemous words in a text [60]. Firstly, in
order to de�ne the search space for the WSD problem it is necessary an inventory
of possible senses for each word in a text. That source of senses is usually a
machine readable dictionary [52] or a semantic network such as WordNet.

The following example has each open class word sub scripted with the num-
ber of senses found in the on-line version of The American Heritage Dictionary

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION75

of the English Language3 .

�Jackson found(4) good(42) medicine(9) in his summer(7) �eld(37) trips(23)

with their unfolding(6) of new(15) horizons(8)�4

The number of possible sense combinations in that sentence is 6,485'028,480.
SR metrics are used to assess the semantic coherence of a speci�c sense com-
bination. The WSD goal is to �nd a sense combination that maintains logical
discourse coherence. Due to high dimensionality and huge search space of the
problem, techniques such as simulated annealing [26] and genetic algorithms
[39] have been used to �nd near-optimal combinations.

4.2.1 Gloss overlap WSD Algorithms

Gloss overlaps, relies on the idea that gloss overlaps (i.e. words in common
between the dictionary de�nitions of a targeted word and its surrounding words
(i.e. context) or glosses from that surrounding words are some kind of SR mea-
sure. Lesk [52]�rst proposed this approach using glosses from amachine readable
dictionary (MRD). The sense combination whose glosses have the highest over-
lap (i.e. words in common) is assumed to be the correct one. Another approach
known as simpli�ed Lesk proposes to disambiguate a targeted word searching the
highest gloss overlap between the glosses of the targeted word with the context
words. The simpli�ed Lesk algorithm do not use the previously disambiguated
word to disambiguate the next. This simpli�cation reduces considerably the
search space and surprisedly get better accuracy than the original approach
[47].

Extended Gloss Overlaps [8] uses not only the overlaps with neighboring
words glosses, but extend the comparisons to glosses of related words. Using
this additional information the disambiguation process is improved.

Cowie et al. [26] proposed a global coherence WSD method at sentence level.
The method can be seen as an application of the Lesk's algorithm simultaneously
to all ambiguous words in a text. The coherence evaluation of a candidate sense
combination is made using the set of sense glosses. Redundancy factor R is
computed in the set of glosses by giving a stemmed word from which appears n
times a score of n− 1 and adding up the scores. Finally the sense combination
with the highest R factor in its glosses is selected using simulated annealing as
optimization technique.

Gelbukh et al. [39] proposed a global coherence method at document level
using a semantic relatedness measure based in glosses. The method aimed to
�nd an optimal sense combination at document level that minimizes the average
distance between senses. Due to the great search space, a genetic algorithm was
used to �nd a near optimal solution. The �tness function is similar to the
mutual constraint principle de�ned by Sussna [85]. Experiments showed that

3http://www.thefreedictionary.com
4Findley Rowe. The Life and Times of William Henry Jackson Photographing the Frontier.

National Geographic Magazine, vol 175, No. 2, 1989 p.238.

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION76

global coherence hypothesis gave better results than methods that uses only
local context such as Lesk's algorithm.

4.2.2 Semantic-Relatedness-based WSD Algorithms

Banerjee and Pedersen [7, 8] noticed that the Lesk's algorithm can be expressed
as an algorithm based in a semantic relatedness measure and name it the Adapted
Lesk Algorithm. In the same way as the simpli�ed Lesk's algorithm, a targeted
word is disambiguated using a symmetric context window of size 2n + 1. Let
si,jbe the i -th sense of the word at the j position relative to the target word
j = 0. The SenseScore for sense s0,kis computed as follows:

SenseScorek =
n∑

i=−n

|wi|∑
j=1

relatedness(s0,k, si,j), i 6= 0

Where |wi| is the number of senses of the word at the relative position i.
The algorithm chooses the sense with the highest SenseScorek for the targeted
word.

Sussna [85] proposed a strategy called mutual constraint, which consist of the
addition of all pairwise semantic relatedness measures in a sense combination of
a text. The candidate sense combination that maximizes the mutual constraint
gives the most coherent sense combination. This approach is only practical at
sentence level or within a context window due to the great number of possible
sense combinations. This approach also agrees with the one-sense-per-discourse
hypothesis because di�erent senses in two instances of a single word in one text
convey a sub-optimal mutual constraint.

Mavroeidis et al. proposed a method called compactness based disambigua-
tion [55], used initially for document classi�cation. The possible sense combi-
nations are treated as a set and the most coherent combination is considered.
This combination is obtained computing the Steiner tree [43] in the semantic
network formed with all the possible word senses in the discourse. The Steiner
tree is restricted to include paths through all least common subsumers (LCS)
of the set of senses.

4.2.3 Graph-based WSD Algorithms

Mihalcea et al. [61] proposed the use of PageRank algorithm [14] in a graph built
with nodes representing word senses in an text and edges are semantic relations
extracted from WordNet. Then PageRank is used to assess the �popularity�
of each node (i.e. sense) in a directed graph representing web pages as nodes
and edges as hyperlinks. The idea of PageRank can be extended to undirected
graphs, in which the out-degree of a node is the same in-degree. Let G = (V,E)
be a undirected graph with the set of nodes V and a set of edges E. The
PageRank value for a node Vi is de�ned with the following expression:

PageRank(Vi) = (1− d) + d ∗
∑

j∈neighbors(Vi)

PageRank(Vj)
|neighbors(Vj)|

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION77

Figure 4.3: Sample graph built over the set of possible labels (shaded nodes) for
a sequence of four words (unshaded nodes). Label dependencies are indicated
as edge weights. Scores computed by the graph based algorithm are shown in
brackets, next to each label (taken from Sinha and Mihalcea [59, 83])

Where the function neighbors(Vi) denotes the set of adjacent nodes to the
node Vi, and d is a damping factor set in 0.85 (see [14] for details). Scores for
each node are initialized in 1 and PageRank is calculated iteratively until conver-
gence. Finally, for each word, the sense with the highest PageRank is selected.
This method is in agreement with the one-sense-per-discourse hypothesis [38]
because of nodes representing the same sense obtains the same PageRank score.
The authors reported better results for their method (47.27% average accuracy)
compared with the Lesk's algorithm (43.19% average accuracy).

Sinha and Mihalcea[59, 83] proposed a method for WSD constructing a graph
aligned to the document whose nodes are possible senses for each word and
edges are semantic similarity measures. Edges are only allowed within a sliding
window over word sequence (size 6 in the experiments) and above a similarity
threshold. Further, a graph-based centrality measure [67] (i.e. indegree, close-
ness, betweenness and PageRank) is computed for each node to determine a
weight. Nodes (i.e. senses) with higher weights are selected for disambiguation.
Figure 4.3 shows a sample graph.

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION78

Figure 4.4: Word sense disambiguation scenario.

w1 w
2

w
3

w
4

w
5

senses

words

4.3 A New Graph-Based Term Disambiguation
Strategy: Shortest-Path

The WSD algorithms reviewed in the previous section considered the disam-
biguation procedure at word level. This means, that each word in the text has a
set of possible senses aligned in the position of the word in the document. The
sense inventory is provided by a machine readable dictionary or a lexicalized
ontology such as WordNet. The �gure 4.4 depicts this scenario. This picture is
clearly similar to the graph in �gure 4.3.

As it was mentioned in the introduction of this chapter, our intention is
to propose a term disambiguation strategy inspired in the WSD algorithms.
Nevertheless, the terms unlike the words are compound of one or more tokens
(words). The case of terms with more than one token is very common in the
laptop lexicon as it can be seen in �gure 2.9. Additionally, the sense inventory is
generated by the three sources of ambiguity also mentioned in the introduction
of this chapter.

Polysemy: terms associated to many concepts.

Morphological_similarity: terms whose character strings representations are
similar.

Terminal_concepts_use_ambiguity: terms associated to concepts that are
shared in the ontology.

The possibility of terms with many tokens and the sources of ambiguity generate
a disambiguation scenario with a shape di�erent to the traditional WSD scenario
showed in �gure 4.4. The candidate senses can range many tokens and a token
can have senses ranging di�erent number of tokens. The term disambiguation
scenario has a graphical shape that can be seen in �gure 4.5.

The sense combination in the term disambiguation scenario has to to guar-
antee that any token be covered by only one sense. For instance, in �gure 4.5

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION79

Figure 4.5: Term disambiguation scenario.

Term

senses

tokens

t 1 t
2

t
3

t
4

t
5

the sense that ranges from t3 to t5 can not be selected simultaneously with the
second sense for the token t5. Despite the di�erence of the scenarios between
WSD and term disambiguation, most of the WSD algorithms can be adapted
to term disambiguation.

Another problem that arises when the WSD algorithms are being adapted
to term disambiguation is that the one-sense-per-discourse hypothesis can not
be accepted. The reason is due to the fact that, if in the possible senses of a
term are included also their possible uses, then only use per discourse can be
accepted for a term. For instance, it can not be accepted that all occurrences of
the term 'MB' in a discourse be related only to the units of the cache memory.
Consequently, the WSD algorithms that are in agreement with that hypothesis
do not seem to be suitable to the proposed disambiguation task.

For our speci�c disambiguation task, a criteria that have not been used in
the past is proposed. The approach is graph-based (see section 4.2.3). The idea
is to build a graph aligned to the document token sequence where the nodes
are the term senses, the undirected edges are added between adjacent senses
and the edges are weighted with the semantic distance (i.e. the inverse of the
semantic relatedness) between the senses. An outline of this graph is shown in
�gure 4.6.

We argue that the shortest path in this graph is a coherent disambiguation
strategy. This idea is motivated by the fact that consecutive terms in a text
document tends to be semantically close. So, in a coherent discourse the chain
of terms are connected with small semantic distances. The combination that
minimizes the addition of those semantic distances is the shortest path in the
proposed graph.

This reasoning could not be valid in texts written in natural language due
to phenomena like anaphoras and long term relations. However, the data-sheet
documents that we are considering are free of this type of issues.

The shortest path in the proposed graph can be obtained using the Dijkstra's

CHAPTER 4. KNOWLEDGE-BASEDWORD SENSE DISAMBIGUATIONMETHODS FOR TERMDISAMBIGUATION80

Figure 4.6: A sample of the graph aligned to the token sequence for term dis-
ambiguation.

t 1 t
2

t
3

t
4

t
5

algorithm [30] of with the Viterbi's algorithm [89] due to the Markovian property
of the graph. For our implementation we chose the Dijkstra's algorithm.

Chapter 5

An Information Extraction

System for Data-Rich

Documents

This chapter assembles the the building blocks developed in the three last chap-
ters in an information extraction system. A block diagram with the overall
system architecture is shown in �gure 5.1. The architecture is going to be out-
lined describing each one of the numbered arrows in that �gure.

1. The input to the system is a sequence of tokens obtained from the text
of a laptop data-sheet (see section 2.4) . The character sequences were
tokenized with a rule-based procedure described in section 6.2.1.

2. The list of terms of the laptop lexicon (see section 2.3) and the document
sequences are provided as input to the Fuzzy String Matcher. This module
make use of the techniques studied in chapter 3 for searching occurrences
of the lexicon terms in the documents in a resilient way.

3. The set of occurrences found by the Fuzzy String Matcher is the main
input for the term disambiguator. Each occurrence stores the positions of
the document sub sequence that were matched and its associated concept
in the ontology (usually a terminal concept). It is important to note that
the tokens in the sequence can have several valid matches. In addition,
this matches can range several tokens in the sequence and also match
overlaps are allowed.

4. The ontology is a directed acyclic graph (see section 2.2), that means that
concepts can be referenced several times. The possible uses of a speci�c
concept can be obtained enumerating the possible paths from the root
concept to that concept. This enumeration constitutes the ontology sense
inventory of semantic paths.

81

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS82

Figure 5.1: Overall architecture for the Information Extraction system

Fuzzy String
Matcher

Term
Disambiguation

root concept

internal concept

terminal concept

Ontology

Sense
Inventory

Labeled
Document

token sequence
semantic path

Semantic
Relatedness

Measure

Document

4

6 7

8

2

1 3

5

5. The implemented semantic relatedness measures were computed using
only the ontology graph of the ontology graph.

6. For each matched term in the document a set of senses or uses are provided
by the sense inventory. The term disambiguator replaces each matched
term label with a set of possible semantic interpretations (i.e. a set of
semantic paths).

7. A mechanism to compare two semantic interpretations (i.e. semantic
paths) is provided to the term disambiguation module in order to assess
the coherence of a speci�c sense combination over the document.

8. Finally. the term disambiguation module combines the inputs 3., 6. and 7.
to decide an unique semantic interpretation to each token in the original
document token sequence.

The sections 5.1, 5.2, 5.3 and 5.4 give additional details about the implementa-
tion of the di�erent modules of the system. The experimental validation of the
extraction system is provided in section 5.5. Finally, some conclusion remarks
are made in section 5.6.

5.1 The Fuzzy String Searcher

The fuzzy string matcher (FSM) module searches for fuzzy coincidences of the
laptop lexicon into the laptop data-sheets documents. The terms in the laptop

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS83

Figure 5.2: Sample of the matching schema.

token#1 token#2 token#3 token#4 token#5 token#6 token#7

Match#1 Match#6

Match#5

Match#4

Match#3

Match#2

Lex.entry#10 Lex.entry#249

Lex.entry#185

Lex.entry#67

Lex.entry#23

Lex.entry#85

lexicon can have one or more tokens, so each match label over the document
stores three �elds: the lexicon entry name and the position of the starting and
ending token. The diagram in �gure 5.2 outlines the matching labeling schema.
There are some additional issues related to the matching that are listed next:

� Overlaps between matches are allowed.

� If two terms in the same lexicon entry match the same tokens only one
match is reported.

� If two consecutive matches refers to the same lexicon entry both matches
are not replaced by a single match.

The naïve approach to match the entire lexicon against the document is to check
all token positions with all lexicon terms. However, this approach is prohibited
because the number of lexicon terms is greater than 1500 and the evaluation
corpus has more than 5000 tokens. The approaches to solve this problem such
as su�x trees, automatas are out of the scope of this thesis.

All the approximate string comparison techniques studied in chapter 3 were
available in the FSM. Nevertheless, we implemented a simple blocking strategy
with a term index by the �rst bi-gram of characters. Clearly, all the tokens
(nor only the �rst) of the terms is included in the index. Additionally, all terms
that seem to be acronyms (i.e. only with capital letters and with less than 7
characters) are indexed by only by their �rst letter. For instance, the �USB�
term was included in all the bi-gram index entries whose �rst character is �U�.
This blocking approach is very conservative, but in preliminary experiments
showed to be slow but very e�ective.

The pattern obtained from the lexicon that is being compared against the
document has considerably less tokens than the later. So, it is assumed that in all
cases (except at the end of the document) the document provide enough tokens
to be compared with the pattern. However, if a punctuation mark is present
in the document it is reasonable to think that tokens beyond this punctuation
mark should be ignored. For instance, if the pattern �Hard Disk Drive� is being
compared in in the following document fragment �... hard disk. Optical drive:

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS84

Table 5.1: List of boundary separators
Character Name

. period
, coma
; semicolon
: colon
(open parentheses
) close parentheses
[open brackets
] close brackets
? question mark
¾ open question mark
! exclamation mark
½ open exclamation mark

<CR>,<LF> carriage return, line feed

DVD- ...�, the period after the token �disk� in the document is boundary and the
token �Drive� from the patten should not be compared with �Optical�. Those
boundary separators are listed in table 5.1.

5.2 The Use/Sense Inventory

The use/sense inventory is a simple repository that stores all the possible seman-
tic paths for each terminal node in the ontology (see the semantic path de�nition
in section 2.2). This inventory is implemented with a dictionary whose key is a
terminal concept name and the data is a set of semantic paths. This inventory
is preprocessed in order to improve the requests of the term disambiguation
module.

5.3 The Implemented Semantic Relatedness Mea-
sures

Five semantic relatedness measures among the measures reviewed in section 4.1
were implemented:

1. Path Length [77] (baseline).

2. Weighted Path Length (see section 4.1.3)

3. Wu & Palmer measure [93].

4. Maynard & Ananiadou measure [56].

5. Stetina et al. measure [84]

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS85

Figure 5.3: A sample of semantic paths for the terminal concept MegaByte.

Megabyte Megabyte Megabyte Megabyte Megabyte

Laptop

Processor

CacheSize

MemorySize

MemoryUnits

Cache

Laptop

Memory

MemorySize

MemoryUnits

Installed

Laptop

VideoAdapter

MemorySize

MemoryUnits

Installed

Laptop

VideoAdapter

MemorySize

MemoryUnits

MaxInstallable

Laptop

Memory

MemorySize

MemoryUnits

MaxInstallable

The selected measures were standardized as semantic distances instead of se-
mantic similarities. The measures 1. and 2. are already distances. Due to
the fact that the values of measures 3. and 4. were normalized in the range
[0,1], they were converted as distances with the simple expression distance =
1−normalizedSimilarity. The Stetina et al. similarity measure were converted
as a distance using the equation 4.3 proposed by the author.

The semantic relatedness measures that uses large corpus (see section 4.1.2)
were not used because in the laptop domain it is di�cult to gather a really large
document corpus of data-sheets in order to reach enough statistical evidence
for each target. On the other hand, the string similarity measures studied in
chapter 3 were only static measures, therefore they either do not use additional
information of the corpus. So, this selection were also made in order to be
consistent with the used string matching.

5.4 The Term Disambiguation Module

The term disambiguation module aims to select one unambiguous semantic in-
terpretation to each one of the tokens in the input document. This module
receives as input the output of the fuzzy string matcher (see �gure 5.2) and
uses the sense inventory in combination with a semantic relatedness measure in
order to select a coherent semantic interpretation of the text.

Three disambiguation strategies were implemented and two baselines:

1. Shortest path, see section 4.3.

2. Adapted Lesk Algorithm [71] with a window of 3 tokens.

3. Shortest path but evaluated only in a sliding window o 3 tokens.

4. First sense selection (baseline).

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS86

Figure 5.4: Token sequence labeled with possible senses (i.e. semantic paths)

Integer

Laptop

HardDisk

MemorySize

MemoryMagnitude

MaxInstallable

Integer

Laptop

HardDisk

MemorySize

MemoryMagnitude

MaxInstallable

Integer

Laptop

HardDisk

MemorySize

MemoryMagnitude

MaxInstallable

Integer

Laptop

HardDisk

MemorySize

MemoryMagnitude

MaxInstallable

Integer

Laptop

HardDisk

MemorySize

MemoryMagnitude

MaxInstallable

Integer

Laptop

VideoAdapter

MemorySize

MemoryMagnitude

MaxInstallable

Integer

Laptop

VideoAdapter

MemorySize

MemoryMagnitude

Installed

Integer

Laptop

Memory

MemorySize

MemoryMagnitude

MaxInstallable

Integer

Laptop

Memory

MemorySize

MemoryMagnitude

Installed

Laptop

Processor

CacheSize

MemorySize

MemoryMagnitude

Cache

Integer

Megabyte

Laptop

VideoAdapter

MemorySize

MemoryUnits

MaxInstallable

Megabyte

Laptop

VideoAdapter

MemorySize

MemoryUnits

Installed

Megabyte

Laptop

Memory

MemorySize

MemoryUnits

MaxInstallable

Megabyte

Laptop

Memory

MemorySize

MemoryUnits

Installed

Laptop

Processor

CacheSize

MemorySize

MemoryUnits

Cache

Megabyte

“MB”“512”... ...

Laptop

Processor

Cache

REF_Cache

“Cache”

5. Random sense selection (baseline).

The input from the fuzzy string matcher �rstly is combined with the use/sense
inventory. As a result, the document token sequence get labeled with the pos-
sible semantic paths for each identi�ed term. An example of a token sequence
sample at this point is shown in �gure 5.4. Further, each semantic path is con-
sidered as a node in a kind of view from above of �gure 5.4 in �gure 5.5. It
is important to note that this sample (�512MB Cache�) do not include multi-
token terms. So, the shape of the graph is closer to the �gure 4.5 in a commoner
scenario.

The edges added to the graph in �gure 5.5 are weighted with semantic dis-
tances obtained from one of the implemented semantic relatedness measures.
Finally, one of the implemented disambiguation strategies select an unique se-
mantic path for each token which had candidates. The �nal output is the same
input sequence of tokens with selected tokens labeled with a semantic path.

5.5 Experimental Validation

The experiments were designed to answer the following questions:

� Which are the static fuzzy string matching techniques more suitable to
the proposed information extraction task?

� Do fuzzy string matching techniques provide robustness or noise to the
proposed information extraction task?

� Which of the selected and proposed semantic relatedness measures makes
better the term disambiguation process?

� Which of the selected and proposed disambiguation strategies are the more
convenient in the speci�c information extraction task?

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS87

Figure 5.5: Graph of semantic paths aligned to the document token sequence

“MB” “Cache”“512”
...

...
..

.

...

...

Semantic

Path #1

Semantic

Path #5

Semantic

Path #5

Semantic

Path #6

Semantic

Path #n

Semantic

Path #4

Semantic

Path #4

Semantic

Path #2

Semantic

Path #2

Semantic

Path #3

Semantic

Path #3

Semantic

Path #1

Semantic

Path #1

w

Semantic

Relatedness

Metric

The experiments were carried out using the manually labeled corpus described
in section 2.4 combining each one of the following variables:

1. The approximate string matching technique.

2. The semantic relatedness measure.

3. The disambiguation algorithm.

4. The lexicon. The options were the original corpus and 8 synthetically
generated noisy lexicons.

The synthetically generated noisy lexicons were obtained making at random edit
operations in the original laptop lexicon. The level of noise P was established in
order to control the amount of noise inserted in the original lexicon. Four levels
of noise were established: 25, 50, 75 and 100. The noise level P = 0 means
the original noise-free lexicon and 100 or more the maximum noise level. The
procedure to generate the noisy lexicons is presented in algorithm 3.

The four generated lexicons with random edition operations at character
level are listed in table 5.2 with the number or edited tokens and the percentage
of edited tokens of the 2771 tokens in the lexicon.

The other set of noisy lexicons were generated with the same procedure
described in algorithm 3, but additionally shu�ing the tokens in the lexicon
terms. This procedure is coarsely described in algorithm 3.

In the same way, the four additional generated lexicons are described in table
5.3 (the total number of terms is 1700).

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS88

Algorithm 2 Noisy lexicon generator with edition operations at character level.
function noisyCharacterEdition(LEXICON, P)

for all TERM in LEXICON do
for all TOKEN in TERM do

if length(TOKEN)>2 and
randomIntegerInRange(0,100)<P then
position=randomIntegerInRange(2,length(TOKEN))
operation=randomIntegerInRange(1,3)
if operation=1 then

TOKEN=deleteCharacterAtPosition(position,TOKEN)
if operation=2 then

TOKEN=insertCharacterAtPosition(position,TOKEN)
if operation=3 then

TOKEN=replaceCharacterAtPosition(position,TOKEN)
return(LEXICON)

Table 5.2: Description of the noisy generated lexicons with character edition
operations.

P # edited tokens edition rate

25 510 18.40%
50 1034 37.31%
75 1553 56.04%
100 2109 76.10%

Algorithm 3 Noisy lexicon generator shu�ing the tokens of the terms.
function shu�edTokenEdition(LEXICON, P)

LEXICON=noisyCharacterEdition(LEXICON, P)
for all TERM in LEXICON do

if numberOfTokensIn(TERM)>1 and
randomIntegerInRange(0,100)<P then
TERM1=shu�eTokensIn(TERM)
while TERM1=TERM do

TERM1=shu�eTokensIn(TERM)
TERM=TERM1

return(LEXICON)

Table 5.3: Description of the noisy generated lexicons with term shu�ing at
token level.

P # edited tokens edition rate # shu�ed terms shu�ing rate

25 547 19.74% 191 11.23%
50 1060 38.25% 391 23.00%
75 1575 56.83% 628 36.94%
100 2109 76.10% 857 50.41%

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS89

Figure 5.6: Characterization of the labeling problem as a two class problem.

A
token#1

A

token#1

B

token#2

B

token#2

token#3

C

token#4

D

token#5

token#5

E

token#6

token#6

token#7

token#7

token#8

token#8

X

token#3

Y

token#4

true
positives

false
positives

false
negatives

true
negatives

ta
rg

et
se

le
ct

ed

(B)(A)

5.5.1 The Performance Metric

The problems of labeling a sequence with a set of labels can be evaluated in may
ways. In fact, in a problem with n labels there are (n+ 1)2 − n type of errors.
That is, a confusion matrix of dimension (n+ 1)× (n+ 1) (the additional label
is the �no-label� label) withdrawing its diagonal. However, in order to make an
analysis of those errors it is necessary to have a very large corpus if the number
of possible labels is large too. That is our case.

Another option, is to considering the labeling as a two class problem. That
is, a particular target token has been labeled or not and the selection was correct
or not. The picture in �gure 5.6 shows that approach. The target labeling is
the manually labeled laptop evaluation corpus (section 2.4) and the selected
labeling is the output of the information extraction system. Each token in the
selected labeling sequence falls in one the next four categories:

True Positive (TP): When the token has been labeled and the selected label
is the same target label. This is the result of an accurate string matching
and/or an accurate term disambiguation.

False Positive (FP): When the token has been labeled and the selected label
is incorrect. There are two cases in this category: (A) when the target
node had no label and (B) when the target node had a di�erent label.
The case (A) is the result of a poor string matching and the case (B)
is the result also of a poor string matching and/or an in-accurate term
disambiguation.

False Negative (FN): When the token has not been labeled even though,
the target token had a label. This category is the result of a poor string
matching.

True_Negative (TN): When the token has not been labeled and the target
token had no label either.

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS90

Figure 5.7: Counting of true positives, false positives and false negatives rang-
ing the string matching threshold in (0,1]. This result was obtained using edit
distance at character level, Minkowski distance at token level (p = −10), path
length as semantic relatedness measure, shortest path as disambiguation strat-
egy using the noise-free laptop lexicon.

0

500

1000

1500

2000

2500

3000

3500

0 0.2 0.4 0.6 0.8 1

threshold

true positives

false positives

false negatives

true positives

upper bound

The graphic in �gure 5.7 shows the tendency of TP, FP and FN when the string
matching threshold is ranged form 0 to 1. The threshold value of 0 means
that all string comparisons among the strings compared in the set de�ned by
the blocking strategy are considered as valid matches. The threshold value
of 1 means that only identical strings are considered as valid matches. It is
important to note that the counting of FN is low because of the used lexicon
is noise-free. However, if a noise lexicon were used, the FN plot would have a
clearly increasing tendency.

The counting of TP, FP and FN is used to de�ne the precision, recall and
F-measure measures with the following equations:

precision =
TP

TP + FP

recall =
TP

TP + FN

F −measure =
2× precision× recall
precision+ recall

The precision measure can be interpreted as the rate of correct labeled tokens
in the set of selected labeled tokens. Similarly, the recall measure is the rate of

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS91

Figure 5.8: Precision/recall/F-measure vs. threshold plot for the same exper-
iment of �gure 5.7. Baselines are obtained with the same experimental setup
but changing the string matching technique to exact match.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

threshold

Recall

Precision

F-measure

Recall-Baseline

Precision-Baseline

F-measure-Baseline

correct labeled tokens in the set of target labeled tokens. The F-measure is the
harmonic mean between precision and recall and re�ects the balance of the two
measures when both have high values. The graphic in �gure 5.8 shows a plot of
precision, recall and F-measure for the same experiment of �gure 5.7.

The performance metric used for the string matching problem in chapter 3
was the interpolated average precision (IAP). This metric was obtained interpo-
lating the recall-precision curve for di�erent thresholds and the area under that
curve is the IAP metric. The graphic in �gure 5.9 shows the recall-precision
plot for the same experiment of �gure 5.7. The interpolated would look like a
step with its elbow in the point where precision and recall have their combined
higher value. This point is also the maximum value of F-measure and is called
as F1-score. The F1-score is a measure of general performance of the labeling
process but focused in the point where the performance reach its maximum.
The string matching threshold were range using steps of 0.05.

The IAP measure re�ects the performance of the labeler for the complete
range of values of the threshold. However, there is not too much interest in the
performance of the labeler for small values of the threshold. Thus, the F1-score
seems to be a more convenient quantitative measure to our particular extraction
system. Additionally to the F1-score, the plot of precision/recall/F-measure vs.
threshold is reported in some experiments as a qualitative measure. Those plots

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS92

Figure 5.9: Recall-precision plot the same experiment of �gure 5.7.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

P
r
e
c
is

io
n

also gave important information about the string matching thresholds where the
F1-score was reached.

5.5.2 Results for the Fuzzy String Matcher

The proposed information extraction system in this chapter is mainly composed
of two subsystems: the fuzzy string matcher and the term disambiguation mod-
ule. The performance of the overall system can be evaluated with the metrics
proposed in the previous section. However, an evaluation data set only for the
fuzzy string matcher is not available. Thus, in order to evaluate only the fuzzy
string matcher the semantic relatedness and the disambiguation strategy were
preestablished for all the experiments. Farther, experiments varying the string
matching technique were carried out. It is expected that the changes in the
overall performance were only originated by the accuracy of the string match-
ing technique. The used semantic relatedness measure was path length (section
4.1) and the disambiguation strategy was shortest path (section 4.3).

It is important to note that the lower the string matching threshold, the
higher the number of valid matches and consequently, the higher the ambiguity
that the term disambiguation module has to deal with. The graphic in �gure
5.10 shows the number o valid matches vs. the string matching threshold using
as string matching technique EditDistance-MongeElkan1.

The experiments were carried out varying �ve string matching techniques
at character level (i.e. EditDistance, 2grams(Dice), Jaro, ExactMatch and
JaroWinkler) and �ve combination techniques at token level (i.e. SimpleStr,
Minkowski-10, MongeElkan, MongeElkan0 and cosine(A)). Results using the
noise-free laptop lexicon for the F1-score are listed in table 5.4 and the string

1The naming convention for the string matching techniques is the same used in chapter 3

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS93

Figure 5.10: Number of valid matches for di�erent string comparison thresholds
using EditDistance-MongeElkan as matching method.

0

5000

10000

15000

20000

25000

30000

0 0.2 0.4 0.6 0.8 1

threshold

#
o
f
m

a
tc

h
es

Table 5.4: F1-score for di�erent string matching techniques using the noise-free
laptop lexicon.

EditDistance 2gram(Dice) Jaro ExactMatch JaroWinkler

SimpleStr 0.833443 0.831804 0.836105 (0.816071) 0.816479
Minkowski-10 0.831796 0.829362 0.833693 0.812196 0.831784
MongeElkan 0.835548 0.830689 0.831611 0.813544 0.829053
MongeElkan0 0.830683 0.831666 0.831611 0.813544 0.829053
cosine(A) 0.832407 0.831816 0.747484 0.815807 0.741935

AVERAGE 0.832775 0.831067 0.816101 0.814233 0.809661

matching thresholds where that F1-score were reached are listed in table 5.5.
The best result and the best average result are shown in bold characters.

The F1-score of 0.816071 obtained with the matching technique ExactMatch-
SimpleStr (i.e. exact string comparison) can be considered a upper-bound be-
cause as it was mentioned in section 2.3, the laptop lexicon was made based
partially in the documents of the laptop evaluation corpus. However, several
string matching techniques outperformed slightly this upper-bound revealing
that even in the �ve documents of the evaluation corpus there were morpholog-
ical variations that have not been considered in the lexicon.

The fact that the approximate string matching techniques has outperformed
the upper-bound is a weak probe of the convenience of using those techniques
instead of the simple exact matching. However, in order to provide a stronger
probe experiments with the noisy synthetical lexicon obtained with the algo-

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS94

Table 5.5: F1-score for di�erent string matching techniques using the noise-free
laptop lexicon.

EditDistance 2gram(Dice) Jaro ExactMatch JaroWinkler

SimpleStr 0.90 0.85 0.95 - 1.00
Minkowski-10 0.90 0.75 0.95 - 0.95
MongeElkan 0.90 0.85 0.95 0.85 0.95
MongeElkan0 0.85 0.85 0.95 - 0.95
cosine(A) 0.90 0.90 1.00 0.95 1.00

Table 5.6: F1-score results for di�erent string matching techniques at di�erent
noise levels in the lexicon.

ExactMatch ExactMatch EditDist. EditDist. 2grams(Dice) EditDist.

P SimpleStr MongeElkan SimpleStr MongeElkan MongeElkan cosine(A)

0 0.816071 0.813544 0.833443 0.835548 0.831666 0.832407
25 0.636644 0.705415 0.741921 0.784871 0.784615 0.778088
50 0.440036 0.537177 0.662466 0.753542 0.754949 0.746999
75 0.255391 0.418154 0.587655 0.716136 0.710129 0.704862
100 0.081679 0.207174 0.529873 0.699073 0.682116 0.683386

rithm 3 and four string matching techniques were carried out. The results of
the F1-score for di�erent levels of noise in the lexicon are shown in �gure 5.11.
As it was expected, the results show that the overall system performance is
better maintained when an approximate string comparison technique is used at
character level.

The lexicons generated with additional noise at token level (see algorithm
3) were used in a similar way in order to evaluate the resilience of the same
matching methods. The results are shown in �gure 5.12. This graphic clearly
shows that a matching technique with a fuzzy strategy at character and at token
level such as EditDistance-MongeElkan provides the better resilience against the
noise.

The table 5.6 shows the tabulated results of the curves of �gure 5.12 with
two additional columns with the results of the matching methods 2grams(Dice)
and EditDistance-cosine(A). Characters in bold face shows the better results for
each noise level.

There are another important issue related to the use of approximate string
matching techniques in the extraction process, that is to determine the right
value for the string matching threshold. The �gure 5.13 shows a matrix of
precision/recall/F-measure vs. threshold plots for 5 levels of noise in the lexicon
(generated with the algorithm 3). It can be noticed that the threshold where
the F1-score is reached tended to move to the left in the plots when the level of
noise in the lexicon increases.

The threshold values where the F1-score were reached are showed in table
5.7. Surprisedly, we notice that the combination method at token level with the

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS95

Figure 5.11: F1-score for di�erent matching methods using �ve levels of
character-edition noise in the lexicon.

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100

noisy lexicon level

F
1
-s

co
re

ExactMatch-SimpleStr ExactMatch-MongeElkan

EditDistance-SimpleStr EditDistance-MongeElkan

Figure 5.12: F1-score for di�erent matching methods using �ve levels of
character-edition noise combined with token shu�e noise in the lexicon.

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100

noisy lexicon level

F
1
-s

co
re

ExactMatch-SimpleStr ExactMatch-MongeElkan

EditDistance-SimpleStr EditDistance-MongeElkan

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS96

Figure 5.13: Precision/recall/F-measure vs. threshold plots

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

0

0.3

0.6

0.9

0.5 0.6 0.7 0.8 0.9 1

EditDistance-
MongeElkan

2grams(Dice)-
MongeElkan0

EditDistance-
cosine(A)

n
o
is

e
fr

ee
 l

ex
ic

o
n

n
o
is

y
le

xi
co

n
 0

.2
5

n
o
is

y
le

xi
co

n
 0

.5
0

n
o
is

y
le

xi
co

n
 0

.7
5

n
o
is

y
le

xi
co

n
 1

.0

precision recall F-measure

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS97

Table 5.7: String matching thresholds for the F1-score results reported in table
5.6.

ExactMatch EditDist. EditDist. 2grams(Dice) EditDist.

P MongeElkan SimpleStr MongeElkan MongeElkan cosine(A)

0 0.85 0.90 0.90 0.85 0.90
25 0.65 0.85 0.85 0.65 0.90
50 0.65 0.80 0.80 0.65 0.90
75 0.50 0.75 0.80 0.60 0.90
100 0.50 0.75 0.80 0.50 0.85

better �xation of the threshold was cosine(A). This method was proposed in
this thesis in section 3.5.

5.5.3 Results for Semantic Relatedness Measures

The implemented semantic relatedness measures mentioned in section 5.3 were
evaluated using the following experimental parameters:

� EditDistance-MongeElkan as string matching technique.

� Noise-free laptop lexicon.

� Shortest path as disambiguation strategy.

The F-measure for values of the string similarity threshold in (0,1] are plotted
in �gure ?. The proposed baseline metric is the simple path length measure,
but no measure manages to consistently outperform this baseline. In fact, in
the zone where the F-measure reach the F1-score (the maximum) path length
surpass all the other measures. On the other hand, the Stetina et al. measure
do no seem to be suitable for our information extraction system.

5.5.4 Results for Disambiguation Strategies

Before to present the results for di�erent disambiguation strategies, lets consider
�rst the level of ambiguity of the task. The graph in �gure ? shows the number of
possible uses/senses for di�erent string matching thresholds using EditDistance-
MongeElkan as string comparison method. It is important to remember that
the total number of targets in the laptop evaluation corpus is 1596. Thus, with
a typical threshold �xed in 0.8 the term disambiguator has to choose 1596 senses
among more than 90,000 candidates.

The experimental parameters used to evaluate the implemented disambigua-
tion strategies (section 5.4) are:

� EditDistance-MongeElkan as string matching technique.

� Noise-free laptop lexicon.

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS98

Figure 5.14: F-measure using shortest-path and di�erent semantic relatedness
measures.

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

threshold

F
-m

e
a
s
u
r
e

Weighted Path Length

Path Length

Wu&Palmer

Maynard&Ananidou

Stetina

Figure 5.15: Number of nodes in the disambiguation graph for di�erent string
comparison thresholds.

0

50,000

100,000

150,000

200,000

250,000

0 0.2 0.4 0.6 0.8 1

threshold

#
o
f
g
ra

p
h

n
o
d
es

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS99

Figure 5.16: Extraction performance (F-measure) comparison between the
Adapted Lesk with window size of 3 vs. shortest path and baselines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
threshold

F
-M

e
a
s
u
r
e

Shortest-Path (window=3) Shortest-Path

First Sense Random Sense

Adapted Lesk (window=3)

� Path length as semantic relatedness measure.

The obtained results can be viewed in the graphic in �gure 5.16.

5.6 Conclusions

The results of the experiments related with the string matching methods let us to
conclude that the use of the evaluated matching measures surpassed the overall
performance of the system in comparison with the use of simplistic exact match.
Additionally, it is possible to conclude that when the string matching threshold
is greater than 0.8 the additional noise that is added to the disambiguation
process do not reduce signi�cantly the overall performance.

Particularly, the methods that combine a character level measure with a to-
ken level metric showed the better resilience against noise. Comparable results
were obtained using: EditDistance-MongeElkan, 2grams(Dice)-MongeElkan and
EditDistance-cosine(A). This last method showed the best stability in the thresh-
old where it reaches the best performance (0.9) in the information extraction
task being exposed to di�erent noise levels.

Related to the semantic relatedness experiments, clearly we can conclude
that the simple path length measure is the more convenient option. Other mea-

CHAPTER 5. AN INFORMATION EXTRACTION SYSTEM FORDATA-RICH DOCUMENTS100

sures with more complex approaches reached the same performance that path
length reached.

Among the disambiguation strategies evaluated, the proposed shortest path
strategy clearly out performed other techniques and baselines.

Chapter 6

Matching Sensitive to

Acronyms and Abbreviations

The chapter 3 studied the problem of compare text strings in a fuzzy way, dealing
mainly with problem such as misspellings, typos, token order, morphological
variations. The chapter 5 showed that it is possible to provide robustness to
an information extraction system using fuzzy string searching. However, there
is another important source of variations in strings, which is the fact that in
written and spoken language it is very common to compress long names in
shorter ones. This practice in the human language has not more than 200 years
but nowadays is omnipresent in the modern language. Particularly, the use of
acronyms and abbreviations in the data-sheets in the IT domain is very frequent.

However, the reviewed techniques for approximate string matching are not
specially designed to deal with the problem of match short-forms and long-
forms with the exception of the edit-distance proposed by Gotoh [40]. The
Gotoh distance proposes the open and extend gap edition operations with lower
costs. Consequently, the editions to transform �USB� into �Universal Serial Bus�
are three open-gap operations after the letters 'U', 'S', 'B' and 17 extend-gap
operations. However, this approach can make �false-matches�, e.g. consider and
�acronym� made with the last letters with the same previous example, that is
�lls�. The Gotoh distance from �USB� or �lls� to �Universal Serial Bus� is the
same.

On the other hand, the results of the previous chapter showed that is more
convenient to treat text strings as sequences of tokens instead as sequences of
characters, but the token oriented approaches do not seem to be suitable to
acronym matching. For instance, matching �USB� with �Universal Serial Bus�
at token level only can be possible if the token �USB� is divided in three tokens.
The heuristic of separate into tokens consecutive capital letters is a common
heuristic used in the acronym matching �eld.

In this chapter we present some existing approaches to the problem of
acronym and abbreviation matching. Additionally, a general integrated method

101

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS102

for applying some of acronym heuristics with the matching methods presented in
chapter 3. The aim of this integration method is to obtain a string matcher that
conserves the properties of the string matching measures and also to support
acronym matching. The proposed method is not going to be validated experi-
mentally in a direct way but like part of complete extraction system proposed
in this thesis. Thus, the overall extraction performance will be compared with
and without the proposed integration method.

This chapter is organized as follows. The section 6.1 present a small survey
of the known approaches to address the acronym matching task. A new method
to integrate acronym matching heuristics to the token-based string comparison
methods is proposed in section 6.2. Finally, the e�ect of the proposed method
in the extraction system presented in chapter ? is discussed in section 6.3.

6.1 Acronym/Abbreviation Matching

The most common form of abbreviation are the acronyms, which that are short-
forms made with the initial letters or syllables of the words in the long-form (e.g.
�USB� stand for �Universal Serial Bus�). Acronyms are single-word contracted
versions of multi-word terms that are used in place of their long versions. Never-
theless, new acronym construction styles are being appearing and the approaches
are so �creative� that the task can be compared with that of assigning names to
things. There are notices of the earlier use of acronym since the 19th century.
Acronyms are being used commonly in modern (post 1940s) English in technical
and legal documents and its use has been spread to many other domains and
languages nowadays. Commonly, acronyms are not included in general domain
dictionaries and � everybody creates new acronyms every day�.

Acronyms/matching is the task of compare short-, long- form pairs (i.e.
abbreviations-de�nition) and to identify valid pairs. Acronym detection (a.k.a.
acronym identi�cation of acronym recognition) is a task broader than acronym
matching, that is �nding pairs of acronym and its de�nition in document cor-
pora in order to build an acronym de�nition list. This task is usually divided
into two sub-tasks: the acronym-de�nition candidate pairs identi�cation and
the acronym-de�nition matching evaluation. We are specially interested in the
second one, that is: given an acronym-de�nition pair, to assess how the acronym
could be generated from the de�nition.

Some applications of the acronym detection task are: OCR re�nement, in-
formation retrieval (retrieve documents that uses the de�nition of the acronym
when the query only has the acronym), knowledge extraction, thesaurus con-
struction, ontology construction, etc.

The metrics used for acronym detection evaluation are precision and recall
and F-measure as is common in many text retrieval experiments. Unfortunately
the results reported by authors shows the overall performance of their methods
combining candidate detection and matching evaluation. Some recall and preci-
sion results are reported for the sake of comparison, but they do not necessarily
re�ects performance only in the acronym matching task.

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS103

recall =
#correct acronymdefinitions found

total# of acronymdefinitions in document

precision =
#correct acronymdefinitions found

total# of acronymdefinitions found

F −measure =
2 ∗ precision ∗ recall
precision+ recall

The most common approaches to the acronym/abbreviation detection prob-
lem have addressed the task using static pattern matching rules and speci�c
heuristics. We consider as unsupervised those methods because do not uses
any kind of labeled data or prede�ned lists of acronym-de�nition pairs to build
their models. Previous work related to the acronym-de�nition matching eval-
uation sub-task (omitting the candidate identi�cation task) is presented in the
following subsections.

6.1.1 String Comparison-Based Methods

The earliest work that we have notice is the Acronym Finding Program (AFP)
by Taghva and Gilbreth [86] who used the LCS [69] as underlying matching
technique. They moved in a sliding window over the document looking for occur-
rences of acronym-de�nition pairs obtaining in its experiments precision of 98%
at recall level of 86% using governmental documents. Their approach considered
only acronyms from three to ten characters. Two letters acronyms such as �US�
(�United States�) or �AI �(�Arti�cial Intelligence�) had too high error rates due to
the high relative error of LCS measure in short strings. The model was re�ned
using heuristics such as to optionally ignore stop words (e.g. and, of), to sepa-
rate hyphenated words (e.g. gas-cooled, non-high-level), |acronym|/|definition|
(the || returns the number of characters of a string) length ratio and �rst letter
matching.

6.1.2 Rule-/Heuristics-Based Methods

Monge and Elkan [64] also proposed a rule matching algorithm for abbreviation
matching based in the following four patterns:

1. The abbreviation is a pre�x of its expansion, e.g. �Univ.� abbreviates
�University�, or

2. The abbreviation combines a pre�x and a su�x of its expansion, e.g.
�Dept.� matches �Department�, or

3. The abbreviation combines a pre�x and a su�x of its expansion, e.g.
�UCSD� abbreviates �University of California San Diego�, or

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS104

4. The abbreviation is a concatenation of pre�xes from its expansion, e.g.
�Caltech� matches �California Institute of Technology�

The authors do not report results for the matching task because it was embedded
in a record linkage general task.

Yeates [94]proposed the Three Letter Acronyms (TLA) algorithm, a greedy
sequential matching algorithm between the acronym and its candidate de�ni-
tion, but adding a set of heuristics in order to discard false alarms. The heuristics
proposed by Yeates are the following:

1. Acronyms are shorter than their de�nitions .

2. Acronyms contain initials of most of the words in their de�nitions.

3. Acronyms are given in upper case.

4. Shorter acronyms tend to have longer words in their de�nition.

5. Longer acronyms tend to have more stop words.

The matching algorithm tokenizes the de�nition into words. Further, the def-
inition is tested from left-to-right trying in order to �nd a match against the
acronym using none or the initial letters of each token. Yeates claimed to obtain
a more general method than Taghva and Gilbreth's method in spite of the lower
performance of his method. Additionally, Yeates proposed as improvement the
use of machine learning techniques to weight the heuristics in order to adapt
the method to di�erent data sets.

Another rule based acronym extractor was named Acrophile by Larkey et al.
[50]. The Acrophile method searches �rst for acronym candidates in the docu-
ment using regular expressions. Next, a greedy acronym expansion algorithm
is used in the neighboring of the acronym candidates to �nd possible expan-
sions and weighting each candidate. Larkey et al. combined several rules and
heuristics for �nding and expanding acronyms.

Pustejovsky et al.[76] noticed that the standard de�nition of acronym (short
forms constructed with initial letters of de�nition words) is poorly used in do-
mains such as biomedical literature. For instance carboxi�uorescein diacetate
(CFDA) do not constitute an acronym according to the previous de�nitions and
�ts better with abbreviation de�nition. The proposed method named AcroMed,
tries to match all acronym characters as a pre�x of in�x of the words of the
candidate de�nition. Considering only de�nitions that starts with the same
character as the acronym a score is computed according to the formula:

Score =
of words in thematch

of characters in the acronym

If Score is lower than a preestablished threshold (i.e. 1.5 had the best re-
sult in experiments) then the candidate de�nition is accepted. This method
combined with a simple regular expression strategy to �nd candidate pairs out-
performs the Acrophile algorithm using the same evaluation corpus. Acromed

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS105

reached recall of 63% at precision of 90% and the best result obtained by
Acrophile was recall of 26% at the same precision.

Schwartz and Hearts [82] proposed a simple but fast and e�ective method.
The matching algorithm process each part of the candidate acronym and de�-
nition form right-to-left trying to match all characters from acronym and some
characters from de�nition. Only the �rst characters of acronym and de�nition
are restricted to match to reach a valid pair. The algorithm do not uses complex
heuristics that usually are developed for speci�c training sets and consequently
di�cult generalization to other domains and documents. This method reached
a recall of 82% at precision of 96% using abstracts from MEDLINE1, compa-
rable to the results obtained by Chang et al. (83% recall at 80% precision)
using a supervised approach and those of Pustejovsky et al. (72% recall at 98%
precision) in the same biomedical texts.

The idea of using compression for acronym detection was proposed by Yeates
et al. [95]. The method relies in the idea that in valid de�nition-acronym pairs,
the de�nition can be coded as the acronym with an acronym-speci�c code using
fewer bits than with a general text compression model such as PPM [10]. The
decision rule was given establishing a threshold θ compared with the ratio of
the number of bits required for coding the acronym model and the compression
model.

bitsacronymmodel

bitstext compressionmodel
5 θ

The acronym model uses a tokenized version of de�nition and stores the
words that have been used to build the acronym and the number of initial
characters that were used. Yeates et al. reported recall close to 80% at 85%-
90% precision with θ = 0.2 using 150 computer science technical reports of 1.4
millions of words including 1080 manually labeled acronym de�nitions.

Adar [1] proposed an acronym matching method mixing approximate string
matching with a set of rules for scoring the matches. The method �rstly found all
possible common sub-sequences between the candidate abbreviation-de�nition
pair. Further, the following score rules (related to acronym matching) are ap-
plied for each candidate pair:

� For every abbreviation character that is at the start of a de�nition word
add 1 to the score.

� The number of de�nition words should be less than or equal to the number
abbreviation characters.

� For every extra word subtract 1.

Empirically, a threshold of 0 was established for valid matching scores. The
experimental evaluation of this method was made with a corpus of biomedical
texts with 11,253,125 documents. The number of unique abbreviation, de�nition
pairs was 136,082. Of these, a random sample of 644 were manually tested
obtaining a 96% accuracy rate.

1MEDLINE. http://www.ncbi.nlm.nih.gov/pubmed

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS106

Table 6.1: Rule examples of the Park and Byrd's method. [70]
Abbreviation Abbv. Pattern De�nition Def. Pattern Formation Rule

2-MASS ncccc Two-Micron All Sky Survey wwwww (1,R) (2,F) (3,F) (4,F) (5,F)
CFCs cccc chloro�uorocarbons w (1,F) (1,I) (1,I) (1,I) (1,I)
X2B cnc Hexadecimal to Binary phsw (1,R) (3,R) (4,F)
NEXT cccc Near-End CrossTalk www (1,F) (2,F) (3,R) (3,I)

SN1987A ccnc Supernove 1987A phnw (1,F) (2,F) (3,R) (4,F)

6.1.3 Induced Rules Methods

Park and Byrd [70] proposed an abbreviation rule discovery system. The train-
ing set is a list of valid abbreviation-de�nition pairs where a set of patters and
formation rules are extracted and ordered by occurrence. Some examples of
extracted rules taken from [70] are shown in table 6.1.

Abbreviation patterns are formed from abbreviations replacing each alpha-
betic character by a 'c' and each sequence of numeric character (including '.'
and ',') by a 'n'. For instance patterns for �2MASS� and �V.3.5� abbreviations
are respectively �ncccc� and �cn�. De�nition patterns are formed with the fol-
lowing code: 'w' (normal word), 's' (stopword form a pre-de�ned list), 'p' (pre�x
from a pre-de�ned list), 'h' (headword i.e. remaining without pre�x) and 'n'
(number). For instance the de�nition pattern for �Supernova 1987A� is 'phnw'.

Formation rules are lists of pairs (word position, formation method). For-
mation method is coded as follows:

F �rst character of a word

I interior character of a word

L last character of a word

E exact match (only for matching numbers)

R special replacement match e.g '�rst' for '1'

Once the patterns and formation rules are extracted from training set, frequent
rules are selected. Further, for validation of an unseen abbreviation-de�nition
pair rules are selected matching abbreviation and de�nition patterns. Next, if
the formation rule can generate the abbreviation from the candidate de�nition
then the candidate pair is labeled as valid. Park and Byrd tested their method
against three documents: a book about automotive engineering, a technical
book from a pharmaceutical company, and NASA press releases for 1999. All
results of recall and precision measures obtained was in the range over 93.8%-
100%. Nevertheless, authors do not give details about the nature and size of
the training set.

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS107

6.1.4 Supervised Methods

Chang et al.[18] proposed a supervised approach to the abbreviation-de�nition
pair matching. They extract a vector of 8 features from a abbreviation-de�nition
pair using a character alignment between them obtained with the longest com-
mon sub-sequence (LCS) algorithm.The features are:

1. Percent of letters in abbreviation in lower case

2. Percent of letters aligned at the beginning of a word

3. Percent of letters aligned at the end of a word

4. Percent of letters aligned on a syllable boundary

5. Percent of letters aligned immediately after another letter

6. Percent of letters in the abbreviation that are aligned

7. Number of words in the de�nition not aligned to the abbreviation

8. Average number of aligned letters per word

Positive examples for the training set were obtained from a list of valid ab-
breviations and its de�nitions using the LCS alignments. Negative examples
were generated with incorrect alignments of correct abbreviations and correct
alignments of incorrect abbreviations. The machine learning model used was
Logistic Regression and the best results reached recall of 83% at 80% preci-
sion against the Medstract Gold Standard Evaluation Corpus [75] of labeled
biomedical abstracts.

Nadeau and Turney [66] proposed a supervised method method similar to
the one of Chang et al. but with more features [18]. They considered all
possible acronym-de�nition pairs at sentence level and used a set of heuristics
to reduce the search space. The training and evaluation sets were built with
the Medstract Gold Standard. Results from experiments using a support vec-
tor machine reached F -measure=88.3%, close to the performance obtained by
Schwartz and Hearst [82] of F -measure=88.4%

6.2 A Fuzzy String Matcher sensitive to Acronyms
and Abbreviations

The strategy that is proposed in this section aims to integrate some of the heuris-
tics reviewed in this chapter into a token-based approximate string matcher.
An idea could be to �activate� the heuristics only when one of the tokens being
compared seem to be an acronym. However, it is also desirable that when two
acronyms are being compared those heuristics should be �deactivated� and the
acronyms should be compared as regular tokens. Additionally, there are some

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS108

token separators such as the period that have to be ignored in some cases (e.g.
when �U.S.� is compared with �US�).

The proposed strategy consist of enumerating all possible token con�gura-
tions obtained when the heuristics are applied or ignored. Further, each pair of
token con�gurations are compared with a token-based string similarity method
and the highest obtained value is returned as the similarity measure for the
strings being compared. The acronym tokenizing method is presented in sec-
tion 6.2.1. The used acronym heuristics and the token combination enumeration
policy are explained in section 6.2.2.

6.2.1 The Acronym Tokenizer

Additionally to the tokenizer presented in section 6.2.1, an acronym tokenizer
is provided for implementing some simple acronym heuristics. This acronym
tokenizer is optionally applied only into tokens obtained with the main tokenizer.
The goal is to identify possible acronyms and separate as tokens the possible
initials letters of the long-form. The used acronym heuristics are:

� Divide as separate tokens two consecutive capital letter characters, e.g.
�US� is tokenized as �U�, �S�.

� Divide as separate tokens a lower-case character followed by a upper-case
character, e.g. �miniDIP� is tokenized as �mini�, �D�, �I�, �P�.

� Divide as separate token capital letters separated by a period ('.'), e.g.
�U.S.A.� is tokenized as �U�, �.�, �S�, �.�, �A�, �.�.

Clearly, if none of those rules can be applied to a speci�c token, it is considered
that this token does not contain an acronym.

6.2.2 Acronym Sensitive Token Matcher

The proposed acronym sensitive matching strategy consist of enumerate all the
possible con�gurations of token between two pairs of multi-token strings con-
sidering and ignoring alternatively some acronym heuristics. The two optional
heuristics to be combined are:

� If the actual token can be divided with the acronym tokenizer, then: option
1) consider the tokens obtained with the acronym tokenizer, option 2)
consider the original token.

� If the actual token is a period, a hyphen or a slash, then: option 1) ignore
it, option 2) consider it.

The enumeration of the combinations is going to be illustrated with an example.
Lets consider the pattern and document being compared at the shaded position
in �gure 6.1. The possible token con�gurations using the proposed acronym
heuristics are enumerated in �gure 6.2. Each token con�guration is compared

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS109

Figure 6.1: Pattern/document example.

S

Pattern

Document

...

Serial

5400 rpm

T

T

A-

A A

A

GB120:DiskHard

with a string matching method in order to obtain a similarity measure. The
con�guration with the highest similarity is chosen. The example in �gure 6.2
has the better con�guration in the combination marked with j)*.

6.3 Experimental Results

The method proposed in this chapter was integrated to the information extrac-
tion system proposed in chapter 5. The best results obtained in that chapter
are compared using the same parameter con�guration with the acronym sensi-
tive token matcher integrated. The used con�guration used in the information
extraction system is:

� EditDistance-MongeElkan as string matching method.

� Path length as semantic relatedness measure.

� Shortest path as term disambiguation strategy.

� The noise-free laptop lexicon was used.

The proposed base line is the F-measure obtained using the same con�guration
but with exact string comparison.

The results in �gure 6.3 show that the use of the acronym sensitive matcher
clearly improve the performance of the information extraction system. Addi-
tionally, the range of the string matching threshold that is above the baseline
was considerably extended.

The approach proposed in this chapter was particularly designed to �t the
styles of acronym construction in the data-sheets considered in this thesis. Be-
sides, the acronym sensitive matcher could be a candidate to be a general match-
ing method for acronyms but a comparison with other methods and experiments
with other data sets would be mandatory. Although, the obtained results with
our particular application are encouraging, the proposed method should be con-
sidered as a baseline for a future work.

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS110

Figure 6.2: Example of the token con�guration combinations enumerated by
the acronym sensitive token matcher.

S

Serial

5400T

ATA-

A A

a)

S

Serial

5400T

ATA-

A A

b)

S

Serial

5400T

ATA-

A A

c)

S

Serial

5400T

ATA-

A A

d)

S

Serial

5400T

ATA-

A A

e)

S

Serial

5400T

A T A-

A A

f)

S

Serial

5400T

A T A-

A A

g)

S

Serial

5400T

A T A-

A A

h)

S

Serial

5400T

A T A-

A A

i)

S

Serial

5400T

A T A-

A A

j)*

S

Serial

5400T

A T A-

A A

k)

S

Serial

5400T

A T A-

A A

l)

S

Serial

5400T

A T A-

A A

m)

S

Serial

5400T

A T A-

A A

n)

S

Serial

5400T

A T A-

A A

o)

S

Serial

5400T

A T A-

A A

p)

S

Serial

5400T

A T A-

A A

q)

S

Serial

5400T

A T A-

A A

r)

CHAPTER 6. MATCHING SENSITIVE TOACRONYMS ANDABBREVIATIONS111

Figure 6.3: Performance comparison of the information extraction system with
and without the acronym sensitive matcher.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
threshold

F
-M

e
a
s
u
r
e

Baseline (ExactMatch-SimpleStr.)

Best Configuration

Best Conf. + Acronym Matcher

Chapter 7

Conclusions

7.1 Conclusions

The following enumeration resumes the strongest and most important state-
ments that can be made from our observations:

1. The results obtained in chapter 3let us to conclude that exploiting the
fact that text strings are naturally divided into sub-sequences of words or
tokens, the quality of the string comparison processes can be increased .

2. The use of approximate string matching techniques that combine strate-
gies at character and at token level, embedded in our speci�c IE task, bring
resilience against noise in spite of the additional ambiguity introduced by
their use.

3. Given the results obtained in chapter 5, the Knowledge-Based, WSD-
inspired proposed algorithm were capable of handling the IE task in data-
rich documents.

4. The proposed acronym sensitive string matcher were capable of increasing
the performance of our IE system given the high number of acronyms in
the laptop lexicon.

7.2 Summary of Contributions

The contributions of this thesis can be summarized as follows:

1. The proposed methods based on fuzzy cardinality estimation proposed
in section 3.5 are very competitive among the static approximate string
comparison methods.

2. It was shown that, a IE process can be addressed as a WSD problem when
the density of extraction targets and the number of target types are high.

112

CHAPTER 7. CONCLUSIONS 113

This approach have not been considered in the past, thus our work opens
the way to a new set of IE methods based on the WSD ideas.

7.3 Future Work

1. The developed prototype can be the base for the construction of an assisted
semantic document annotation system. The data obtained with this tool
brings the possibility to build an IE model with predicting abilities. That
is, a model that can enrich the ontology and the lexicon.

2. The proposed methods for combining character and token level measures
can be extended to integrate other measures in replacement of those of
character-level. For instance, if there is evidence that the words �con-
troller� and �adapter� are synonyms in the IT domain, a comparison be-
tween �video controller� and �video adapter� can be easily identi�ed as a
valid match. Similarly, using general bi-lingual dictionaries the informa-
tion extraction process can be extended to many languages.

Appendix A

Laptop Ontology

Laptop →has−part
1 [CommercialO�er, LaptopID, Processor, Chipset, Memory, Hard-

Disk, Display, VideoAdapter, OpticalDrive, NetworkAdapter, Modem, Input-
Device, Battery, ACAdapter, AudioAdapter, Interfaces, ExpansionSlots, War-
rantyServices, PhysicalDescription, Software, Webcam, MediaAdapter, Secu-
ritySpecs]

A.1 CommercialO�er

CommercialO�er →has−part [ListPrice, MonthlyPrice, NetPrice, Rebate, Ship-
ping, Availability, NoPaymentsTime] ListPrice \rightarrow_{has-part} [Money]
MonthlyPrice \rightarrow_{has-part} [Money]

NetPrice →has−part [Money] Rebate \rightarrow_{has-part} [Money]

Money →has−part [Currency, MoneyAmount]

Shipping →has−part [Money, TimeMeasurement]

NoPaymentsTime →has−part [TimeMeasurement]

A.2 ProductID

LaptopID →has−part [UPCCode, Brand, Family, SubFamily, Model, PartNumber,
Certi�cation]

ProcessorID →has−part [Brand, Family, Model]

VideoAdapterID →has−part [Brand, Family, Model]

WirelessAdapterID →has−part [Brand, Model]

1All �has-part�, �has-attribute� and �has-capability� relationships are denoted as �has-part�.

114

APPENDIX A. LAPTOP ONTOLOGY 115

BroadBandWirelessAdapterID →has−part [Brand, Model]

ModemID →has−part [Brand]

AudioAdapterID →has−part [Brand, Family]

SpeakerID →has−part [Brand]

ChipsetID →has−part [Brand, Family, Model]

A.3 Processor

Processor →has−part [ProcessorID, BusWidth, FrontSideBus, Cache, Speed, BusWidth,
Technology]

FrontSideBus →has−part [FrequencyMagnitude, MegaHertz]

Cache →has−part [CacheSize, CacheLevel]

CacheSize →has−part [MemorySize]

Speed →is−a [FrequencyMeasurement]

BusWidth →has−part [TwoPower, Bit]

A.4 Chipset & Memory

Chipset →has−part [ChipsetID]

Memory →has−part [Installed, MaxInstallable, Technology, ModuleTransferRate,
ModuleType, MemorySlots, hasECC]

ModuleTransferRate →has−part [Name, MemorySpeed]

MemorySpeed →has−part [FrequencyMeasurement]

Installed →has−part [MemorySize]

MaxInstallable →has−part [MemorySize]

MemorySlots →has−part [TotalSlots, OccupiedSlots, AvailableSlots]

TotalSlots →has−part [Digit]

OccupiedSlots →has−part [Digit]

AvailableSlots →has−part [Digit]

hasECC →has−part [Boolean]

APPENDIX A. LAPTOP ONTOLOGY 116

A.5 HardDisk

HardDisk →has−part [Capacity, MaxStorageCapacity, Controller, HDRotationSpeed,
MotionSensor, MinSeekTime, AverageSeekTime, MaxSeekTime, PhysicalDe-
scription]

Capacity →has−part [MemorySize]

MaxStorageCapacity →has−part [MemorySize]

HDRotationSpeed →has−part [HDRotationSpeedMagnitude, RevolutionsPerMinute]

MinSeekTime →has−part [TimeMeasurement]

AverageSeekTime →has−part [TimeMeasurement]

MaxSeekTime →has−part [TimeMeasurement]

A.6 Display

Display →has−part [PixelResolution, NamedResolution, Technology, Diagonal, Pix-
elPitch, ContrastRatio, hasAmbientLightSensor, isWidescreen]

PixelResolution →has−part [PixelResolutionHorizontal, X, PixelResolutionVerti-
cal]

Diagonal →has−part [DistanceMagnitude, Inch]

PixelPitch →has−part [DistanceMeasurement]

ContrastRatio →has−part [Ratio] hasAmbientLightSensor \rightarrow_{has-part}
[Boolean]

isWidescreen →has−part [Boolean]

A.7 VideoAdapter

VideoAdapter →has−part [VideoAdapterID, VideoMemory, Slot, TVTuner, VideoIn-
terfaces]

VideoInterfaces →has−part [HDMI]

VideoMemory →has−part [Installed, MaxInstallable, isShared, isDedicated, isDis-
crete, Technology]

TVTuner →has−part [TVFormat, hasTVTunner]

hasTVTunner →has−part [Boolean]

APPENDIX A. LAPTOP ONTOLOGY 117

A.8 OpticalDrive

OpticalDrive →has−part [OpticalFormat, DVDLayer, Labeling, supportsBluRay,
supportsDoubleLayer]

OpticalFormat →has−part [CDFormat, DVDFormat, BluRayFormat, HDDVDFor-
mat, numberOfFormats]

numberOfFormats →has−part [Integer]

CDFormat →has−part [Media, ReadSpeed, WriteSpeed]

DVDFormat →has−part [Media, ReadSpeed, WriteSpeed]

BluRayFormat →has−part [Media, ReadSpeed, WriteSpeed]

HDDVDFormat →has−part [Media]

ReadSpeed →is−a [OpticalDriveSpeedMagnitude]

WriteSpeed →is−a [OpticalDriveSpeedMagnitude]

supportsBluRay →has−part [Boolean] supportsDoubleLayer \rightarrow_{has-part}
[Boolean]

A.9 NetworkAdapter (s) & Modem

NetworkAdapter →has−part [LANAdapter, WirelessAdapter, BlueToothAdapter,
BroadBandWirelessAdapter]

LANAdapter →has−part [DataRate, DataRateUnits, Jack, hasLANAdapter]

hasLANAdapter →has−part [Boolean]

WirelessAdapter →has−part [WirelessAdapterID, Autentication, Version, hasAn-
tenna, hasWirelessAdapter, hasOnO�Switch]

hasWirelessAdapter →has−part [Boolean]

hasOnO�Switch →has−part [Boolean]

BlueToothAdapter →has−part [Technology, Version, hasBlueToothAdapter, has-
BlueToothAntenna]

hasBlueToothAdapter →has−part [Boolean]

hasBlueToothAntenna →has−part [Boolean]

BroadBandWirelessAdapter →has−part [BroadBandWirelessAdapterID, hasAn-
tenna]

Modem →has−part [ModemID, Version, Jack, Certi�cation, isSoftwareModem]

isSoftwareModem →has−part [Boolean]

APPENDIX A. LAPTOP ONTOLOGY 118

A.10 InputDevice (s)

InputDevice →has−part [Keyboard, PointingDevice, HotKeys, hasRemoteControl]

hasRemoteControl →has−part [Boolean]

PointingDevice →has−part [Technology, hasLeftButton, hasRightButton, hasCen-
terButton, hasScrollZone, isElectroStaticTouchPad]

hasLeftButton →has−part [Boolean]

hasRightButton →has−part [Boolean]

hasCenterButton →has−part [Boolean]

hasScrollZone →has−part [Boolean]

isElectroStaticTouchPad →has−part [Boolean]

Keyboard →has−part [Country, Layout, KeyPitch, KeyStroke, NumberOfKeys, has-
NumericKeyPad, hasScrollBar, isSpillResistant]

hasNumericKeyPad →has−part [Boolean]

hasScrollBar →has−part [Boolean]

isSpillResistant →has−part [Boolean]

NumberOfKeys →has−part [Integer]

KeyPitch →has−part [DistanceMeasurement]

KeyStroke →has−part [DistanceMeasurement]

HotKeys →has−part [Type]

A.11 Battery & ACAdapter

Battery →has−part [Cells, Technology, Life, Energy, PhysicalDescription, Rechar-
geTime, BatteryWarranty, ElectricalCurrentCapacity, isRechargeable, isRe-
movable]

Cells →has−part [Digit]

Life →has−part [TimeMeasurement]

RechargeTime →has−part [RechargeTimeO�, RechargeTimeOn]

RechargeTimeO� →has−part [TimeMeasurement]

RechargeTimeOn →has−part [TimeMeasurement]

Energy →has−part [EnergyMeasurement]

APPENDIX A. LAPTOP ONTOLOGY 119

BatteryWarranty →has−part [TimeMeasurement]

ElectricalCurrentCapacity →has−part [CurrentMeasurement]

isRechargeable →has−part [Boolean]

isRemovable →has−part [Boolean]

ACAdapter →has−part [ACInput, DCOutput, PhysicalDescription]

ACInput →has−part [MinFrequency, MaxFrequency, MinVoltage, MaxVoltage, Pow-
erRequirements, CurrentRequirements, hasVoltageAutoSensing]

MinFrequency →has−part [FrequencyMeasurement]

MaxFrequency →has−part [FrequencyMeasurement]

MinVoltage →has−part [PotentialMeasurement]

MaxVoltage →has−part [PotentialMeasurement]

PowerRequirements →has−part [PowerMeasurement, Tolerance]

CurrentRequirements →has−part [CurrentMeasurement, Tolerance]

Tolerance →has−part [Percentage]

hasVoltageAutoSensing →has−part [Boolean]

DCOutput →has−part [Voltage, Current, Power]

Voltage →has−part [PotentialMeasurement]

Current →has−part [CurrentMeasurement]

Power →has−part [PowerMeasurement]

A.12 PhysicalDescription

PhysicalDescription →has−part [Weight, Color, Material, Dimensions]

Weight →has−part [WeightMeasurement]

Dimensions →has−part [Height, Width, Depth]

Height →has−part [DistanceMeasurement, MinHeight, MaxHeight]

Width →has−part [DistanceMeasurement]

Depth →has−part [DistanceMeasurement]

MinHeight →has−part [DistanceMeasurement]

MaxHeight →has−part [DistanceMeasurement]

Webcam →has−part [Resolution]

Resolution →has−part [Magnitude, PixelUnits]

APPENDIX A. LAPTOP ONTOLOGY 120

A.13 AudioAdapter & Speaker

AudioAdapter →has−part [AudioAdapterID, Speaker, Sampling, Technology, has-
Microphone, MicrophoneDirection, AudioInterfaces]

hasMicrophone →has−part [Boolean]

Sampling →has−part [Integer, Bit]

AudioInterfaces →has−part [HDMI, hasS/PDIF, HeadphoneJack, MicrophoneJack,
LineOutJack]

HeadphoneJack →has−part [hasHeadphoneJack, AudioJackType]

MicrophoneJack →has−part [hasMicrophoneJack, AudioJackType]

LineOutJack →has−part [hasLineOutJack, AudioJackType]

hasS/PDIF →has−part [Boolean]

hasHeadphoneJack →has−part [Boolean]

hasMicrophoneJack →has−part [Boolean]

hasLineOutJack →has−part [Boolean]

Speaker →has−part [SpeakerID, Type, SoundPower, Impedance, hasSpeaker]

SoundPower →has−part [PowerMeasurement]

Impedance →has−part [ImpedanceMeasurement]

hasSpeaker →has−part [Boolean]

A.14 MediaAdapter & Interfaces & Expansion-
Slots

MediaAdapter →has−part [Technology, NumberOfMediaFormats, hasMediaAdapter]

hasMediaAdapter →has−part [Boolean]

NumberOfMediaFormats →has−part [Integer]

Interfaces →has−part [USB, IEEE1394, hasSerial, hasParallel, hasInfraRed, HDMI,
hasPS/2, hasPortReplicatorConnector]

USB →has−part [NumberOfPorts, Version]

IEEE1394 →has−part [NumberOfPorts, PinOut]

PinOut →has−part [Integer, Pin]

APPENDIX A. LAPTOP ONTOLOGY 121

HDMI →has−part [NumberOfPorts, Version]

VGA →has−part [NumberOfPorts, PinOut]

hasSerial →has−part [Boolean]

hasParallel →has−part [Boolean]

hasInfraRed →has−part [Boolean]

hasPS/2 →has−part [Boolean]

hasPortReplicatorConnector →has−part [Boolean]

ExpansionSlots →has−part [PCCardSlots, PCExpressSlots, PCISlots]

PCCardSlots →has−part [SlotsNumber, Type, hasPCCardSlots]

PCExpressSlots →has−part [SlotsNumber, Type, hasPCExpressSlots]

PCISlots →has−part [SlotsNumber, hasPCISlots]

hasPCCardSlots →has−part [Boolean]

hasPCExpressSlots →has−part [Boolean]

hasPCISlots →has−part [Boolean]

SlotsNumber →has−part [Digit]

A.15 WarrantyServices

WarrantyServices →has−part [Warranty, Support, hasDamageCoverage]

hasDamageCoverage →has−part [Boolean]

Warranty →has−part [OnSiteWarranty, CarryInWarranty, PartsWarranty, Labor-
Warranty]

OnSiteWarranty →has−part [TimeMeasurement, Region]

CarryInWarranty →has−part [TimeMeasurement, Region]

PartsWarranty →has−part [TimeMeasurement, Region]

LaborWarranty →has−part [TimeMeasurement, Region]

Support →has−part [EmailSupport, TelephoneSupport, OnlineSupport]

EmailSupport →has−part [EmailAddress, TimeMeasurement]

TelephoneSupport →has−part [ToolFreeNumber, Region, WeeklySchedule, TimeMea-
surement]

APPENDIX A. LAPTOP ONTOLOGY 122

ToolFreeNumber →has−part [Integer]

WeeklySchedule →has−part [hoursDay, daysWeek]

hoursDay →has−part [Integer, Hour]

daysWeek →has−part [Integer, Day]

OnlineSupport →has−part [URLAddress, TimeMeasurement]

A.16 Software

Software →has−part [OperatingSystem, ProductivitySoftware, PhotoSoftware, Burn-
ingSoftware, SecuritySoftware, UtilitySoftware, MediaSoftware, VideoSoftware]

OperatingSystem →has−part [ProcessorArchitecture, Brand, Family, Software-
Version, SubVersion]

ProcessorArchitecture →has−part [ProcessorType, BusWidth]

ProductivitySoftware →has−part [Brand, Family, SoftwareVersion, SubVersion,
Licence]

PhotoSoftware →has−part [Brand, Family, SoftwareVersion, SubVersion, Licence]

VideoSoftware →has−part [Brand, Family, SoftwareVersion, SubVersion, Licence]

BurningSoftware →has−part [Brand, Family, SoftwareVersion, SubVersion, Licence]

SecuritySoftware →has−part [Brand, Family, SoftwareVersion, SubVersion, Licence]

UtilitySoftware →has−part [Brand, Family, SoftwareVersion, SubVersion]

MediaSoftware →has−part [Brand, Family, SoftwareVersion, SubVersion]

SoftwareVersion →has−part [Decimal, Integer, Version]

Licence →has−part [LicenceType, TrialPeriod]

TrialPeriod →has−part [TimeMeasurement]

A.17 Security

SecuritySpecs →has−part [PhysicalSecurity, SoftwareSecurity]

PhysicalSecurity →has−part [hasCableLockSlot, hasFingerprintSensor, TPM]

TPM →has−part [Brand, Version]

hasFingerprintSensor →has−part [Boolean]

hasCableLockSlot →has−part [Boolean]

APPENDIX A. LAPTOP ONTOLOGY 123

SoftwareSecurity →has−part [hasPasswordSecurity, hasUserPassword, hasSuper-
visorPassword]

hasPasswordSecurity →has−part [Boolean]

hasUserPassword →has−part [Boolean]

hasSupervisorPassword →has−part [Boolean]

A.18 Measurements

FrequencyMeasurement →has−part [Magnitude, FrequencyUnits]

MemorySize →has−part [MemoryMagnitude, MemoryUnits]

TimeMeasurement →has−part [Magnitude, TimeUnits]

DistanceMeasurement →has−part [Magnitude, DistanceUnits]

EnergyMeasurement →has−part [Magnitude, EnergyUnits]

WeightMeasurement →has−part [Magnitude, WeightUnits]

PotentialMeasurement →has−part [Magnitude, PotentialUnits]

PowerMeasurement →has−part [Magnitude, PowerUnits]

CurrentMeasurement →has−part [Magnitude, CurrentUnits]

ImpedanceMeasurement →has−part [Magnitude, ImpedanceUnits]

CurrentMeasurement →has−part [Magnitude, CurrentUnits]

DataRateMeasurement →has−part [Magnitude, DataRateUnits]

MemoryMagnitude →is−a [TwoPower, Integer, Decimal]

Magnitude →is−a [Integer, Decimal, Fraction, Digit]

MoneyAmount →is−a [Integer, Decimal]

Percentage →has−part [Magnitude, PercentageCharacter]

FrequencyUnits →is−a [Hertz, KiloHertz, MegaHertz, GigaHertz]

MemoryUnits →is−a [Bit, Byte, KiloByte, MegaByte, GigaByte, TeraByte]

TimeUnits →is−a [PicoSecond, NanoSecond, MicroSecond, MiliSecond, Second,
Minute, Hour, Day, BusinessDay, Week, Month, Year]

DistanceUnits →is−a [PicoMeter, NanoMeter, MicroMeter, MiliMeter, CentiMe-
ter, Inch, Feet, Yard, Meter, KiloMeter, Mile]

APPENDIX A. LAPTOP ONTOLOGY 124

EnergyUnits →is−a [WattHour, KiloWattHour, MiliWattHour]

WeightUnits →is−a [Gram, MiliGram, KiloGram, Pound, Ounce]

PotentialUnits →is−a [Volt, MiliVolt, KiloVolt]

PowerUnits →is−a [Watt, MiliWatt, KiloWatt, HorsePower]

CurrentUnits →is−a [Ampere, MiliAmpere]

PixelUnits →is−a [Pixel, MegaPixel]

ImpedanceUnits →is−a [Ohm, MiliOhm, KiloOhm, MegaOhm]

DataRateUnits →is−a [KilobitPerSecond, MegabitPerSecond, GigabitPerSecond,
TerabitPerSecond, KilobytePerSecond, MegabytePerSecond, GigabytePerSec-
ond, TerabytePerSecond]

Fraction →has−part [Integer, Slash, Integer]

Ratio →has−part [Integer, Colon, Integer]

Boolean →is−a [Yes, Not]

Appendix B

Laptop Lexicon

Ampere: [�A�, �Ah�, �Amperes"]

AudioAdapterID_Brand: [�Creative"]

AudioAdapterID_Family: [�Sound Blaster"]

AudioAdapter_Technology: [�SRS Labs audio enhancements", �SRSWOWâ�¢
HD stereo"]

AudioJackType: [�mono", �monaural", �MonoAural", �stereo", �dolby"]

Availability: [�In Stock"]

AvailableSlots: [�Available", �Free", �Disponible"]

Battery_Technology: [�Ion", �Li-ion", �Lithium Ion", �NiCad", �Nickel Cad-
mium", �NiCd", �NiMH", �Nickel Metal Hydride", �Lithium Polymer"]

Bit: [�Bit", �Bits"]

BluRayFormat_Media: [�BD-R", �BD-R DL", �BD-RE", �BD-RE DL", �BR-
ROM"]

BlueToothAdapter_Technology: [�Enhanced Data Rate", �EDR+"]

BlueToothAdapter_Version: [�2.0"]

BroadBandWirelessAdapterID_Brand: [�Verizon", �AT&T", �Sprint"]

BroadBandWirelessAdapterID_Model: [�V740"]

BurningSoftware_Brand: [�Nero", �Sonic", �Roxio", �Sony", �Toshiba"]

BurningSoftware_Family: [�Burning ROM", �Burn", �Creator", �CD Burn-
ing", �DVD Burning", �Disc Creator", �Click to DVD", �DVD Creation
DVgate"]

125

APPENDIX B. LAPTOP LEXICON 126

BusinessDay: [�business days", �weekdays", �work day", �workday", �working
day", �monday to friday", �mon to fri", �mon-fri"]

Byte: [�Byte", �Bytes", �Octet"]

CDFormat_Media: [�CD+(E)G", �CD-DA", �CD-EXTRA", �CD-I", �CD-I
Bridge", �CD-MIDI", �CD-R", �CD-ROM", �CD-ROM XA", �CD-RW",
�CD-RW", �CD-TEXT", �Multisession CD", �Photo-CD", �Portfolio", �Video
CD"]

CacheLevel: [�Level2", �L2"]

CentiMeter: [�centimeter", �cm"]

ChipsetID_Brand: [�ATI", �Intel"]

ChipsetID_Family: [�RADEON"]

ChipsetID_Model: [�XPress 200M", �200M", �945GMS"]

Colon: [�:"]

Color: [�Black", �Gray", �White", �Blue", �Carbon", �Silver", �Aluminium Sil-
ver", �Cloud", �Red", �Titanium Silver", �Magnesium alloy", �Charcoal
Black", �Sienna", �Slate Blue", �Onyx Blue Metallic", �Mist Gray", �Smart
Indigo"]

Currency: [�$", �US$", �U$", �Â¿", �Â¥", �â
¤", �â
�", �â
¿", �â
¬"]

DVDFormat_Media: [�DVDÂ±R/RW", �DVD+R", �DVD+RDL", �DVD+RW",
�DVD+-RW", �DVD-10", �DVD-18", �DVD-5", �DVD-9", �DVD-R", �DVD-
R DL", �DVD-RAM", �DVD-RAM", �DVD-ROM", �DVD-RW", �HD DVD-
ROM", �DVD-Video", �DVD-Audio"]

DVDLayer: [�Single", �Double", �+/-R double", �Double Layer"]

Day: [�day", �days"]

Diagonal_DistanceMagnitude: [�11.1", �12.1", �13.3", �15.4", �17", �4.5",
�9.5", �17.0"]

Digit: [�0", �1", �2", �3", �4", �5", �6", �7", �8", �9", �one", �two", �three",
�four", ��ve", �six", �seven", �eight", �nine"]

Display_Technology: [�XBRITE", �BrightView", �LCD", �TFT", �TFT active-
matrix", �TruBrite", �Ultra BrightView", �LED backlight", �Blacklit", �ac-
tive matrix"]

Feet: [�feet", �ft"]

Fraction: [�â. . . �", �â. . . �", �â. . . �", �â. . . ÷", �5/8", �â. . . º", �Â¼", �Â½", �Â¾"]

APPENDIX B. LAPTOP LEXICON 127

FrontSideBus_FrequencyMagnitude: [�533", �667", �800"]

GigaByte: [�GB", �GByte", �GigaByte", �Giga Byte", �G.B."]

GigaHertz: [�GHz", �Gigahertz", �Giga Hertz"]

GigabitPerSecond: [�Gigabit per second", �Gbit/s", �Gbps"]

GigabytePerSecond: [�Gigabyte per second", �GB/s", �GBps"]

Gram: [�g", �grms", �grams"]

HDDVDFormat_Media: [�HD DVD-ROM", �HD DVD-Video"]

HDMI_Version: [�1.0", �1.1", �1.2", �1.2a", �1.3", �1.3a", �1.3b"]

HDRotationSpeed_HDRotationSpeedMagnitude: [�4200", �5400", �7200"]

HardDisk_Controller: [�ATA", �SATA", �S-ATA", �Serial-ATA", �Serial ATA",
�UATA", �U-ATA", �Ultra-ATA", �Ultra ATA", �IDE", �EIDE", �E-IDE",
�Enhanced IDE", �Enhanced IDE"]

Hertz: [�Hz", �Hertz"]

HorsePower: [�hp", �horsepower", �horse power"]

HotKeys_Type: [�Media", �Application", �Windows", �Internet", �CD/DVD",
�DVD/CD", �DVD", �Play Menu", �Sound", �Volume", �volume up", �vol-
ume down", �volume mute", �mute", �Screen Blank", �Security", �Pause",
�Play", �Skip", �Skip to Next Track", �Next Track", �Skip to Previous
Track", �Previous Track", �Stop", �Instant On"]

Hour: [�hour", �hours", �hrs", �hr"]

Inch: [�inch", �inches", �in", �""]

Keyboard_Country: [�ES", �LA", �FR", �US"]

Keyboard_Layout: [�QWERTY", �DVORAK", �QUERTZ", �AZERTY"]

KiloByte: [�KB", �KByte", �KiloByte", �Kilo Byte", �K.B.", �K"]

KiloGram: [�Kg", �kg", �kilograms"]

KiloHertz: [�KHz", �Kilohertz", �Kilo Hertz"]

KiloMeter: [�kilometer", �km"]

KiloOhm: [�kilohms", �kOhm", �KÎ©"]

KiloVolt: [�KV", �kilovolts"]

KiloWatt: [�KW", �kilowatts"]

APPENDIX B. LAPTOP LEXICON 128

KiloWattHour: [�KWh", �KWHr"]

KilobitPerSecond: [�Kilobit per second", �Kbit/s", �Kbps"]

KilobytePerSecond: [�Kilobyte per second", �KB/s", �KBps"]

LANAdapter_DataRate: [�10", �100", �1000", �10/100", �100/1000", �10/100/1000",
�Base-T", �Base-TX", �Gigabit Ethernet", �Ethernet", �Fast Ethernet"]

LANAdapter_Jack: [�RJ-45"]

LaptopID_Brand: [�Toshiba", �HP", �Hewlett Packard", �Compaq", �HP
Compaq", �Dell", �Sony", �Lenovo", �NEC", �Packard Bell", �Samsung",
�LG", �ASUS", �Gateway"]

LaptopID_Certi�cation: [�Australia / NZ A-Tick", �Blue Angel", �BNCI or
BELUS", �BSMI", �CCC", �CE Marking", �CI", �CSA", �Energy Star",
�FCC", �GOST", �GS", �ICES", �Japan VCCI", �MIC", �SABS", �Saudi
Arabian (ICCP)", �UKRSERTCOMPUTER", �UL "]

LaptopID_Family: [�VAIO", �Pavilion", �Presario", �Tecra", �Satellite", �Portege"]

LaptopID_Model: [�A130-ST1311", �dv9500t", �VGN-UX390N", �VGN-TXN15P/B",
�TXN15P/B", �U200", �U205", �A135-S4498", �A135", �dv9330us"]

LaptopID_PartNumber: [�PSAD6U-01500J", �PSAD0U-03V011", �RV112UA#ABA"]

LaptopID_SubFamily: [�UX"]

LicenceType: [�Full", �Trial", �Freeware", �GLP", �Shareware", �Try", �Try-
ware"]

Material: [�Magnersium alloy", �Polycarbonate ABS", �Carbon Fiber"]

MediaAdapter_Technology: [�Memory Stick", �Memory Stick PROâ�¢", �Mem-
ory Stickâ�¢", �miniSDâ�¢", �Multimedia Media Card", �SD", �SDIO",
�Secure Digital", �Smart Card", �xD Picture Card"]

MediaSoftware_Brand: [�Microsoft", �Real", �Apple", �InterVideo", �Toshiba",
�HP"]

MediaSoftware_Family: [�WinDVD", �RealPlayer", �QuickTime", �Windows
Media Player", �Media Player", �Speech System", �Rhapsody", �Real-
Rhapsody", �Real Rhapsody", �Quick Play"]

MegaByte: [�MB", �MByte", �MegaByte", �Mega Byte", �M.B.", �Megas",
�M"]

MegaHertz: [�MHz", �Megahertz", �Mega Hertz"]

MegaOhm: [�megaohms", �MOhm", �MÎ©"]

APPENDIX B. LAPTOP LEXICON 129

MegaPixel: [�M", �MP", �megapixel"]

MegabitPerSecond: [�Megabit per second", �Mbit/s", �Mbps"]

MegabytePerSecond: [�Megabyte per second", �MB/s", �MBps"]

Memory_Technology: [�DDR", �DDR2", �DDR3", �EDO", �FPM", �GDDR2",
�GDDR3", �GDDR4", �GDDR5", �Rambus", �SDR", �SDRAM", �SGRAM",
�XDR", �DDR2-400", �DDR2-533", �DDR2-667", �DDR2-800", �DDR2-
1066"]

Meter: [�meter", �m"]

MicroMeter: [�micrometer", �Î¼m"]

MicroSecond: [�Micro Second", �Î¼s"]

MicrophoneDirection: [�directional", �omni-directional"]

Mile: [�mile", �mi"]

MiliAmpere: [�mA", �mAh", �miliamperes"]

MiliGram: [�mg", �miligrams"]

MiliMeter: [�milimeter", �mm"]

MiliOhm: [�miliohms", �mOhm", �mÎ©"]

MiliSecond: [�Milli Second", �ms"]

MiliVolt: [�mV", �milivolts"]

MiliWatt: [�mW", �miliwatts"]

MiliWattHour: [�mWh", �mWHr"]

Minute: [�minutes", �min", �'", �m"]

ModemID_Brand: [�Conexant", �Toshiba"]

Modem_Certi�cation: [�Australian ACA", �C.I.S.P.R.22", �Canadian ICES-
003 Class B", �CCIB", �CE Mark", �CSA", �CTR21", �FCC Part 15 Class
B", �FCC Part 68", �Industry Canada", �NEMKO", �UL"]

Modem_Jack: [�RJ-11", �Standard Telephone Jack", �Phone Jack"]

Modem_Version: [�56K", �v.90", �v.92"]

ModuleTransferRate_Name: [�PC66", �PC100", �PC133", �PC166", �PC200",
�PC1600", �PC2100", �PC2700", �PC3200", �PC4200", �PC5300", �PC2-
3200", �PC2-4200", �PC2-5300", �PC-66", �PC-100", �PC-133", �PC-166",
�PC-200", �PC-1600", �PC-2100", �PC-2700", �PC-3200", �PC-4200", �PC-
5300"]

APPENDIX B. LAPTOP LEXICON 130

ModuleType: [�Dimm", �Simm"]

Money: [�Free", �No Charge"]

Month: [�month", �mth"]

MotionSensor: [�3D Accelerometer", �3D DriveGuard", �G-Sensor"]

NamedResolution: [�SXGA+", �Wide SVGA", �Widescreen XGA", �Widescreen
XGA+", �WSXGA+", �WUXGA", �WXGA", �WXGA+"]

NanoMeter: [�nanometer", �nm"]

NanoSecond: [�Nano Second", �ns"]

Not: [�No", �Not", �Non", �Optional", �Select models", �Selected models", �some
models", �in selected models", �in selected con�gurations"]

NumberOfMediaFormats: [�formats", �in 1"]

NumberOfPorts: [�one", �two", �three", �four", ��ve", �six", �1", �2", �3",
�4", �5", �6", �1x", �2x", �3x", �4x", �5x", �6x", �x1", �x2", �x3", �x4",
�x5", �x6"]

OccupiedSlots: [�Used", �Occupied"]

Ohm: [�Ohms", �Ohm", �Î©"]

OperatingSystem: [�Windows XP", �Win XP", �Windows Vista", �Linux"]

OperatingSystem_Brand: [�Microsoft", �MS", �SUN", �Apple", �Caldera",
�SCO", �IBM", �Novell", �Caldera", �Debian", �Mandriva", �Red Hat",
�Fedora", �SuSE", �Ubuntu"]

OperatingSystem_Family: [�Windows", �GNU/Linux", �Linux", �Solaris",
�MacOS", �Macintosh", �Unix", �SCO Unix", �AIX", �Netware", �Free-
DOS"]

OperatingSystem_SoftwareVersion: [�XP", �Vista"]

OpticalDriveSpeedMagnitude: [�2", �2.4", �4", �8", �10", �24", �32", �40",
�52"]

OpticalDrive_Labeling: [�DiscT@2", �Label�ashâ�¢", �LightScribe"]

Ounce: [�oz", �ounces"]

PCCardSlots_Type: [�I", �II", �III", �IV"]

PCExpressSlots_Type: [�ExpressCard/34", �34", �ExpressCard/54", �54"]

PercentageCharacter: [�%"]

APPENDIX B. LAPTOP LEXICON 131

PhotoSoftware_Brand: [�Corel", �HP"]

PhotoSoftware_Family: [�Photo Album", �Paint Shop", �PhotoSmart"]

PicoMeter: [�picometer", �pm"]

PicoSecond: [�Pico Second", �ps"]

Pin: [�pin", �Pin"]

Pixel: [�pixel", �pixels"]

PixelResolutionHorizontal: [�1024", �1280", �1366", �1400", �1440", �1680",
�1680", �1920", �2048"]

PixelResolutionVertical: [�600", �768", �800", �1050", �900", �1050", �1200",
�1536"]

PointingDevice_Technology: [�Accupoint", �Dual Mode Pad", �Duo Mode
Padâ�¢", �Pointer", �PointStick", �TouchPad", �TrackBall"]

Pound: [�pound", �lb", �lbs", �#"]

ProcessorArchitecture_ProcessorType: [�386", �x86", �i386", �ALPHA",
�MIPS", �RISC"]

ProcessorID_Brand: [�Intel", �AMD", �Motorola"]

ProcessorID_Family: [�Pentium", �Celeron", �Celeron M", �Centrino", �Cen-
trino Duo", �Centrino Pro", �Core(TM) 2 Duo", �Core Duo", �Core Solo",
�Core 2 Duo", �Pentium dual-core", �Semprom", �Turion", �Turion 64",
�Turion 64 Mobile", �Turion 64 X2"]

ProcessorID_Model: [�430", �3200+", �3400+", �3500+", �3600+", �360M",
�3800+", �T2060", �T2080", �T2250", �T2350", �T2400", �T2450", �T2500",
�T2600", �T5200", �T5300", �T5500", �T5600", �T5600", �T7100", �T7200",
�T7300", �T7400", �T7500", �T7600", �T7700", �U1400", �U1500"]

Processor_Technology: [�ULV", �Ultra Low Voltage", �Mobile"]

ProductivitySoftware_Brand: [�Microsoft", �MS", �Corel", �SUN", �Lotus",
�IBM", �Adobe"]

ProductivitySoftware_Family: [�Wordperfect", �O�ce", �Word", �Excel",
�Works", �O�ce X3", �Acrobat Reader", �PowerPoint", �Accounting Ex-
press", �Outlook", �Publisher", �Access", �Money"]

REF_ACAdapter: [�AC Adapter", �AC-Adapter", �Power", �external AC
Adapter", �Power Supply", �Power"]

REF_ACInput: [�Input"]

APPENDIX B. LAPTOP LEXICON 132

REF_AudioAdapter: [�Audio Adapter", �Audio", �Audio Card", �Sound",
�Sound Card", �Audio System", �Sound System", �Windows Sound Sis-
tem"]

REF_AudioJackType: [�Jack", �Port", �Jack Type", �Audio Jack", �Plug",
�Audio Plug"]

REF_Availability: [�Availability"]

REF_AverageSeekTime: [�Seek Time", �Average Seek Time"]

REF_Battery: [�Battery", �Battery pack", �Primary battery", �Rechargable
battery", �Power", �Main Battery"]

REF_BatteryWarranty: [�Warranty"]

REF_Battery_Cells: [�cell", �cells"]

REF_Battery_Life: [�Battery Life", �Estimated Battery Life", �up to"]

REF_Battery_Technology: [�Material", �Type"]

REF_BluRayFormat: [�Blu-ray", �Bluray"]

REF_BlueToothAdapter: [�Bluetooth"]

REF_Brand: [�Brand", �Builder", �Manufacturer", �Made by", �Â®"]

REF_BroadBandWirelessAdapter: [�WWAN", �Wireless WAN", �Broad-
band Wireless", �Mobile", �Mobile Internet", �Broadband"]

REF_BurningSoftware: [�Burning", �CD authoring", �DVD authoring"]

REF_CDFormat: [�CD", �CompactDisk", �Compact Disk"]

REF_Cache: [�Cache", �Microprocessor Cache", �Processor Cache", �System
Cache", �Cache Size"]

REF_CacheLevel: [�Cache Level", �Level"]

REF_CarryInWarranty: [�Carry-in", �Carry in", �at service center"]

REF_Chipset: [�Chipset"]

REF_Color: [�Color", �Case Color", �Chasis Color", �Cover Color"]

REF_Computer: [�Computer", �PC", �Personal Computer"]

REF_ContrastRatio: [�Contrast Ratio"]

REF_DCOutput: [�Output"]

REF_DVDFormat: [�DVD", �Digital Versatile Disc", �Digital Video Disc"]

APPENDIX B. LAPTOP LEXICON 133

REF_DVDLayer: [�Layer"]

REF_Depth: [�Depth", �D", �L", �Length"]

REF_Dimensions: [�Dimensions", �Measurement"]

REF_Display: [�Display", �Monitor", �Screen", �Panel"]

REF_Display_Diagonal: [�Diagonal", �Size", �Viewing angle"]

REF_ElectricalCurrentCapacity: [�Capacity"]

REF_EmailSupport: [�Email Support", �Email-support"]

REF_Energy: [�Energy"]

REF_ExpansionSlots: [�Expansion Slot", �Slot", �Slots"]

REF_Family: [�Product family", �Family", �Product Series", �Series", �Prod-
uct Type", �Type", �Â®"]

REF_FrontSideBus: [�FSB", �Front Side Bus", �System Bus", �system bus
running", �up to"]

REF_HDDVDFormat: [�HD DVD", �HDDVD", �High De�nition DVD"]

REF_HDMI: [�HDMI", �High De�nition Multimedia Interface"]

REF_HDRotationSpeed: [�Speed"]

REF_HardDisk: [�Hard Disk", �HD", �HDD", �Hard Disk Drive", �Disk",
�Hard Drive"]

REF_HardDisk_Capacity: [�Capacity", �Size"]

REF_HardDisk_Controller: [�Controller", �Drive Controller", �Interface"]

REF_Height: [�H", �Height", �thick", �thin"]

REF_HotKeys: [�Hot Keys", �Hot Key Functions", �One-Touch Button",
�One-Touch Productivity Button", �Launch Button", �Action Button",
�Key Function", �Programmable Key", �Dial Control", �Buttons", �Con-
trol Button"]

REF_IEEE1394: [�Firewire", �i.Link", �IEEE 1394a", �iLink", �IEEE 1394"]

REF_ITProduct: [�Product", �Product Description", �Product Specs", �Prod-
uct Speci�cations"]

REF_InputDevice: [�Input Device"]

REF_Interfaces: [�Ports", �interface", �Interfaces", �Input and Outputs", �Data
Interface", �Data ports", �Ports and Connectors", �External Ports"]

APPENDIX B. LAPTOP LEXICON 134

REF_KeyStroke: [�Stroke", �Key Stroke"]

REF_Keyboard: [�Keyboard"]

REF_Keyboard_Country: [�Country", �Layout"]

REF_Keyboard_KeyPitch: [�Pitch", �Key Pitch", �Key Size", �center-to-
center spacing"]

REF_LANAdapter: [�LAN", �Local Area Network", �Network", �Network
Adapter", �Network Connection", �NIC", �Network Interface Card", �Eth-
ernet"]

REF_LANAdapter_DataRate: [�Speed", �Data Rate"]

REF_LANAdapter_Jack: [�Jack", �Port", �Connector", �LAN Port", �Net-
work Port", �Ethernet Port"]

REF_Labeling: [�Labeling"]

REF_LaborWarranty: [�Labor", �Labor Coverage", �Labor Service"]

REF_Laptop: [�Laptop", �Notebook", �Portable Computer"]

REF_Licence: [�Licence"]

REF_ListPrice: [�List Price", �From", �Original Price", �Price", �Regular
Price"]

REF_Material: [�Material", �Case Material", �Chasis Material"]

REF_MaxHeight: [�Max", �Max Height", �Rear", �R"]

REF_MaxSeekTime: [�Max Seek Time", �Maximum Seek Time"]

REF_MaxStorageCapacity: [�Max Capacity", �Max Storage Capacity", �Up
to", �Max"]

REF_Media: [�media"]

REF_MediaAdapter: [�Bridge Media Adapter", �Digital Media Reader", �Me-
dia Adapter", �Media Slot", �Media Slot", �Media Reader", �Memory Me-
dia", �Media Card Reader", �Multimedia Card Reader", �Media", �Slot",
�Media Port"]

REF_MediaSoftware: [�Media", �Player"]

REF_Memory: [�Memory", �Main Memory", �System Memory"]

REF_MemorySlots: [�Slots", �Memory Slots", �Main memory slots", �Acce-
sible memory slots"]

REF_Memory_Installed: [�Installed", �Installed Memory", �From", �Mem-
ory Size", �Con�gured with", �Capacity"]

APPENDIX B. LAPTOP LEXICON 135

REF_Memory_MaxInstallable: [�to", �up to", �upgrade to", �Upgread-
able to", �Maximum", �Max", �Supported", �Max Supported", �Maxi-
mum Supported", �Max Memory", �MaximumMemory", �Max Capacity",
�Maximum Capacity"]

REF_Memory_Technology: [�Memory Technology", �Type"]

REF_MinHeight: [�Min", �Min Height", �Front", �F", �thin at front", �as
thin as"]

REF_MinSeekTime: [�Min Seek Time", �Minimum Seek Time"]

REF_Model: [�Model", �Model Number"]

REF_Modem: [�Modem", �Fax/Modem", �Fax Modem"]

REF_Modem_Certi�cation: [�Modem Certi�cation", �Telephone Certi�-
cation"]

REF_Modem_Jack: [�Modem Port", �Modem Jack", �Telephone Plug"]

REF_Modem_Version: [�Version", �Speed", �Compliant"]

REF_ModuleTransferRate: [�Bandwidth", �Transfer Rate", �Module Name",
�Transfer Capacity", �Speed"]

REF_MonthlyPrice: [�/mo", �/month", �As low as", �month", �a month",
�monthly payments", �Payments"]

REF_MotionSensor: [�Motion Sensor", �Impact Protection", �Shock Protec-
tion", �Protection"]

REF_NamedResolution: [�Resolution"]

REF_NetPrice: [�Net Price", �Your Price", �After Rebate", �From"]

REF_NetworkAdapter: [�Network Adapter", �Communications", �Network
Connection"]

REF_NoPaymentsTime: [�no payments"]

REF_NumberOfKeys: [�key", �keys"]

REF_NumberOfPorts: [�port", �jack", �ports", �jacks"]

REF_OnSiteWarranty: [�OnSite", �On Site", �On-Site"]

REF_OnlineSupport: [�OnLine", �Online", �On line", �On-line", �Chat"]

REF_OperatingSystem: [�Operating System", �Operative System", �SO",
�S.O."]

REF_OpticalDrive: [�Optical Drive", �Drive", �Removable Media", �Multi-
media Drive", �Fixed Optical Disk Drive"]

APPENDIX B. LAPTOP LEXICON 136

REF_OpticalFormat: [�Format", �Formats"]

REF_PCCardSlots: [�PCCard", �PC-Card", �PC Card", �CardBus", �PCM-
CIA", �Card Slot"]

REF_PCCardSlots_Type: [�Type"]

REF_PCExpressSlots: [�PCExpress", �PC-Express", �PC Express", �Ex-
pressCard"]

REF_PCExpressSlots_Type: [�Type", �FormFactor"]

REF_PCISlots: [�PCI", �PCI connector", �PCI slots", �PCI Port", �PCI Ex-
pansion"]

REF_PartNumber: [�Part No.", �Part", �Part Number", �Product Number"]

REF_PartsWarranty: [�Parts", �Hardware", �Hardware Parts"]

REF_PhotoSoftware: [�Photo", �Photograph", �Image", �Picture"]

REF_PhysicalDescription: [�Physical Description", �Physical Speci�cations"]

REF_PhysicalSecurity: [�Physical Security"]

REF_PixelPitch: [�Pixel Pitch", �Pitch"]

REF_PixelResolution: [�Resolution", �Native resolution"]

REF_PointingDevice: [�Pointing Device", �Mouse", �Mouse Device"]

REF_PowerRequirements: [�Power Requirements", �Power Consumption"]

REF_Processor: [�Processor", �Microprocessor"]

REF_ProductivitySoftware: [�Productivity", �O�ce Productivity"]

REF_ReadSpeed: [�Read", �Max", �X", �x"]

REF_Rebate: [�Rebate", �Instant Rebate", �Instant savings", �Instantly",
�o�", �Price Drop", �Save"]

REF_RechargeTime: [�Recharge", �Recharge Time"]

REF_RechargeTimeO�: [�on", �On"]

REF_RechargeTimeOn: [�o�", �O�"]

REF_Region: [�Region", �Zone"]

REF_Resolution: [�Resolution"]

REF_Sampling: [�Resolution", �Sampling", �Sampling Rate"]

APPENDIX B. LAPTOP LEXICON 137

REF_SecuritySoftware: [�Security Software", �Security", �Antivirus", �Anti-
virus", �Anti-spyware", �Virus Protection", �Featured", �Trace"]

REF_SecuritySpecs: [�Security"]

REF_Shipping: [�Shipping", �ships"]

REF_Shipping_Money: [�Shipping Price"]

REF_Shipping_TimeMeasurement: [�Shipping Time", �Ships in", �Usu-
ally ships in"]

REF_SlotsNumber: [�connectors", �slots", �ports"]

REF_Software: [�Software", �Included Software", �Supplied Software", �Third-
party software"]

REF_SoftwareSecurity: [�Software Security"]

REF_SoftwareVersion: [�Version", �Release", �Edition", �v", �V"]

REF_Speaker: [�Speakers"]

REF_Speed: [�Speed", �Processor Speed", �Microprocessor Speed", �Clock"]

REF_Support: [�Support", �Customer Care", �Assistance", �available"]

REF_TPM: [�TPM", �Trusted Plataform Module", �TPM chip", �TPM se-
curity device", �TCG", �Trusted Computing Group"]

REF_TVTuner: [�TV Tuner", �Television", �TV", �TV & Entretainment"]

REF_Technology: [�Technology", �Type"]

REF_TelephoneSupport: [�Telephone Support", �Telephone Assistance", �toll-
free", �Call"]

REF_Tolerance: [�+", �+-", �+/-"]

REF_TotalSlots: [�total", �total memory slots"]

REF_UPCCode: [�UPC", �UPC Code", �Universal Product Code"]

REF_USB: [�USB", �Universal Serial Bus", �USB Ports", �USB Slots"]

REF_USB_Version: [�compliant", �version", �ver."]

REF_UtilitySoftware: [�Utility", �Utilities", �Con�guration", �Con�g", �Setup",
�Back-Up", �Back Up", �Recovery"]

REF_Version: [�Version", �Ver", �V"]

APPENDIX B. LAPTOP LEXICON 138

REF_VideoAdapter: [�Video Adapter", �Graphics", �Graphics Card", �Graph-
ics Engine", �Graphics Subsystem", �Graphics Adapter", �Video Graph-
ics", �Graphics Processing Unit", �Video"]

REF_VideoInterfaces: [�Video Interface", �Monitor Port", �Video port", �Out-
put port", �Video Connector", �Monitor Connector", �Interface"]

REF_VideoMemory: [�Graphics Memory", �Video Memory"]

REF_VideoMemory_Installed: [�Video Memory", �Memory", �Video RAM",
�RAM", �From", �Con�gured with"]

REF_VideoMemory_MaxInstallable: [�to", �up to", �Upgreadable to",
�Maximum", �Max", �Supported", �Max Supported", �Maximum Sup-
ported", �Max Memory", �Maximum Memory", �Max Capacity"]

REF_VideoSoftware: [�Video", �Movie"]

REF_WarrantyServices: [�Warranty", �Services", �Standard Limited War-
ranty", �Limited Warranty", �Support", �Coverage", �Basic Warranty"]

REF_Webcam: [�Webcam", �Web camera", �Video camera", �Videoconfer-
ence", �Videoconference camera", �Videoconferencing"]

REF_WeeklySchedule: [�a week", �Weekly schedule"]

REF_Weight: [�Weight", �starting at", �starting weight", �weighing only",
�Weight Starting at"]

REF_Width: [�Width", �W"]

REF_WirelessAdapter: [�WLAN", �Wireless", �Wireless Adapter", �WLAN
Adapter", �Wireless LAN", �Wireless LAN Adapter", �Wireless Network
Connection", �Wireless Option", �Wireless Support", �Wi-FiÂ®", �Com-
munications", �cable free"]

REF_WriteSpeed: [�Write", �Max", �X", �x"]

REF_hasAmbientLightSensor: [�ambient light sensor"]

REF_hasAntenna: [�Antenna"]

REF_hasBlueToothAntenna: [�Bluetooth Antenna", �Antenna"]

REF_hasCableLockSlot: [�Lock Slot", �Cable Lock Slot", �Cable Lock",
�Kensington", �MicroSaver", �security slot", �security lock"]

REF_hasCenterButton: [�mouse center", �left center", �center"]

REF_hasDamageCoverage: [�Damage Coverage", �Accident Coverage", �Ac-
cidental Damage Coverage"]

APPENDIX B. LAPTOP LEXICON 139

REF_hasECC: [�ECC", �EDAC", �EDAC protected"]

REF_hasFingerprintSensor: [�Biometric", �Fingerprint", �Sensor", �Finger
Print", �Reader"]

REF_hasHeadphoneJack: [�headphone", �headphone jack", �headphone port",
�headphone output port", �headphone output"]

REF_hasInfraRed: [�Infrared", �IR", �FastIR", �Remote Control Receiver",
�Remote Receiver"]

REF_hasLeftButton: [�mouse left", �left button", �left"]

REF_hasLineOutJack: [�line out", �line-out", �line out jack", �line out port"]

REF_hasMicrophoneJack: [�microphone", �microphone jack", �microphone
port", �microphone input", �microphone input port", �microphone in"]

REF_hasNumericKeyPad: [�Numeric Key Pad", �Numeric Keypad"]

REF_hasPS/2: [�PS/2", �mouse port", �keyboard port"]

REF_hasParallel: [�DB-25", �Parallel", �Parallel Port", �IEEE1284", �IEEE-
1284", �Centronics", �Centronics port", �parallel legacy port"]

REF_hasPasswordSecurity: [�Password", �Password Security", �Password
Protecction", �Power-on password"]

REF_hasPortReplicatorConnector: [�Replicator", �Docking", �Port Repli-
cator", �Replicator", �Port Replicator Connector", �Port Replicator Slot",
�Docking Station Port", �Docking Station Connector", �Docking Station
Slot"]

REF_hasRemoteControl: [�Remote Control", �RC", �Mobile Remote Con-
trol", �IR Control"]

REF_hasRightButton: [�mouse right", �right button", �right"]

REF_hasS/PDIF: [�S/PDIF", �SPDIF", �IEC958 type II", �Sony/Phillips
Digital Interface Format"]

REF_hasScrollBar: [�Scroll bar"]

REF_hasScrollZone: [�scroll zone", �vertical scroll", �dedicated vertical scroll",
�Up/Down pad"]

REF_hasSerial: [�9-pin serial", �RS-232", �RS232", �Serial Port", �Serial",
�COM ports", �DE-9", �serial legacy port"]

REF_hasSpeaker: [�Built-in speakers"]

REF_hasSupervisorPassword: [�Supervisor", �Admin", �Administrator"]

APPENDIX B. LAPTOP LEXICON 140

REF_hasUserPassword: [�User"]

REF_hasVoltageAutoSensing: [�AutoSensing", �auto sensing"]

REF_isElectroStaticTouchPad: [�Electro-Static"]

REF_isRechargeable: [�Rechargeable"]

REF_isRemovable: [�Removable"]

REF_isSoftwareModem: [�software", �software modem", �soft modem", �soft-
modem", �soft"]

REF_isSpillResistant: [�Spill-Resistant", �Spill resistant"]

REF_isWidescreen: [�Widescreen"]

REF_numberOfFormats: [�up to", �Formats"]

REF_supportsBluRay: [�Blue-Ray", �Blue Ray"]

REF_supportsDoubleLayer: [�DL", �Double Layer"]

Region: [�US", �USA", �Canada", �WorldWide", �Word Wide", �Word-Wide"]

RevolutionsPerMinute: [�rpm", �RPM", �r/min"]

Second: [�Second", �Sec.", �s"]

SecuritySoftware_Brand: [�Symantec", �Norton", �McAfee", �LoJack", �Trend-
Micro"]

SecuritySoftware_Family: [�Antivirus", �Internet Security", �Computrace"]

Slash: [�/"]

SoftwareVersion: [�introductory version", �95", �96", �97", �98", �99", �2000",
�2001", �2002", �2003", �2004", �2005", �2006", �2007", �2008", �2009",
�2010", �I", �II", �III", �IV", �V", �VI", �VII", �VIII", �IX", �X", �XI",
�XII", �XIII", �XIV", �XV"]

SpeakerID_Brand: [�Altec Lansing", �JBL", �Harman/Kardon"]

Speaker_Type: [�mono", �stereo", �dolby", �dolby virtual"]

SubVersion: [�Small Business", �Basic", �Business", �Desktop", �Embeded",
�Essentials", �full", �Home", �Home", �Student", �Teacher", �Home Basic",
�Premier", �Premium", �Pro", �Professional", �Runtime Enviroment", �Server",
�Service Pack 1", �Service Pack 2", �SP1", �SP2", �Standard", �Std",
�Suite", �Ultimate", �Light"]

TPM_Brand: [�Atmel", �Broadcom", �Sinosun", �STMricoelectronics", �Win-
bond"]

APPENDIX B. LAPTOP LEXICON 141

TVFormat: [�1080i", �720p", �NTSC", �PAL"]

TeraByte: [�TB", �TByte", �TeraByte", �Tera Byte", �T.B."]

TerabitPerSecond: [�Terabit per second", �Tbit/s", �Tbps"]

TerabytePerSecond: [�Terabyte per second", �TB/s", �TBps"]

TwoPower: [�1", �2", �4", �8", �16", �32", �64", �128", �256", �512", �1024",
�2048", �4096", �8192", �16384", �32768", �65536"]

USB_Version: [�2.0", �1.1", �v2.0", �v1.1"]

UtilitySoftware_Brand: [�Roxio", �Toshiba", �HP", �Softthinks"]

UtilitySoftware_Family: [�Backup MyPC", �Con�gFree", �Game Console",
�PC Recovery"]

VideoAdapterID_Brand: [�ATI", �NVIDIA", �Intel", �SiS"]

VideoAdapterID_Family: [�GeForce", �Mobility", �Radeon", �All-in-wonder",
�Fire GL", �Fire MV", �GeForce", �GeForce M", �Quadro", �Quadro NVS",
�Quadro FX", �GMA", �Graphics Media Accelerator"]

VideoAdapterID_Model: [�Xpress", �X200M", �200M", �X3100", �Go 6150",
�Go 7200", �Go 7300", �Go 7400", �Go 7600", �Go 7600", �950"]

VideoAdapter_Slot: [�PCI", �PCI Express", �PCI Extended", �PCIe"]

VideoInterfaces: [�VGA", �VGA out", �RGB", �DVI", �DVI-I", �DVI-D", �S-
Video", �S Video", �TV-out", �TV out"]

VideoMemory_Technology: [�TurboCacheâ�¢"]

VideoMemory_isDedicated: [�dedicated"]

VideoMemory_isDiscrete: [�discrete"]

VideoMemory_isShared: [�shared", �dynamically allocated shared"]

VideoSoftware_Brand: [�Ulead", �Adobe", �Microsoft", �Muvee"]

VideoSoftware_Family: [�DVDMovieFactory", �DVDMovie Factory", �Pre-
miere", �Movie Maker", �Windows Movie Maker", �AutoProducer"]

Volt: [�V", �volt", �volts"]

Watt: [�W", �watt", �watts"]

WattHour: [�watthour", �watts hour", �Wh", �WHr"]

Webcam_Resolution: [�VGA", �640x480", �800x600"]

Week: [�week", �wk"]

APPENDIX B. LAPTOP LEXICON 142

WeeklySchedule: [�7x24", �24x7"]

WirelessAdapterID_Brand: [�Atheros", �Broadcom", �Intel"]

WirelessAdapterID_Model: [�PROWireless", �PRO/Wireless LAN", �3945BG",
�3945ABG", �4311AG", �4311BG", �4965 AGN"]

WirelessAdapter_Autentication: [�802.11b/g", �802.1x", �EAP-TLS", �EAP-
TTLS", �LEAP", �PEAP-GTC", �PEAP-MSCHAPv2", �Wi-Fii Protected
Access", �WPA", �WPA2"]

WirelessAdapter_Version: [�802.11 a/b/g", �802.11 a/b/g/draft-n", �802.11
pre-n", �802.11a/b/g/n", �802.11a/g/n", �802.11b/g", �draft 802.11n"]

X: [�x", �X"]

Yard: [�yard", �yd"]

Year: [�year", �Yr"]

Yes: [�Yes", �Included", �Standard", �Capable", �Ready", �Installed", �PreIn-
stalled", �Compatible", �Bundled", �BuiltIn", �Embedded", �Integrated",
�Supported", �Support"]

daysWeek: [�workdays", �working days", �weekends", �business days"]

hasMicrophone: [�mic", �microphone", �built-in microphone"]

hasOnO�Switch: [�on/o�"]

Appendix C

A Laptop Labeled Data-sheet

Example

This manually labeled sequence example correspond to the �rst reported data-
sheet in table 2.2.

['HP']: Laptop� LaptopID� Brand

['Pavilion']: Laptop� LaptopID� Family

['dv9500','t']: Laptop� LaptopID� Model

['series']: Laptop� LaptopID� Family� REF_Family

['HP']: Laptop� LaptopID� Brand

['Windows','Vista�']: Laptop� Software� OperatingSystem

['Home']: Laptop� Software� OperatingSystem� SubVersion

['Premium']: Laptop� Software� OperatingSystem� SubVersion

['dv9500','t']: Laptop� LaptopID� Model

['series']: Laptop� LaptopID� Family� REF_Family

['From...','<TAB>']: Laptop� CommercialO�er�NetPrice� REF_NetPrice

['$',]: Laptop� CommercialO�er� NetPrice� Money� Currency

['after','rebate']: Laptop� CommercialO�er� NetPrice� REF_NetPrice

['As','low','as']: Laptop� CommercialO�er�MonthlyPrice� REF_MonthlyPrice

['$',]: Laptop� CommercialO�er� MonthlyPrice� Money� Currency

143

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 144

['35']: Laptop� CommercialO�er�MonthlyPrice�Money�MoneyAmount�
Integer

[]: Laptop� CommercialO�er� MonthlyPrice� REF_MonthlyPrice

['90']: Laptop� CommercialO�er� NoPaymentsTime� TimeMeasurement�
Magnitude� Integer

['days']: Laptop� CommercialO�er�NoPaymentsTime� TimeMeasurement�
TimeUnits� Day

['no','payments']: Laptop� CommercialO�er� REF_NoPaymentsTime

['Free']: Laptop� CommercialO�er� Shipping� Money

['shipping']: Laptop� CommercialO�er� Shipping� REF_Shipping

['$',]: Laptop� CommercialO�er� Shipping� Money� Currency

['49']: Laptop� CommercialO�er� Shipping�Money�MoneyAmount� In-
teger

['$',]: Laptop� CommercialO�er� Rebate� Money� Currency

['150']: Laptop� CommercialO�er� Rebate�Money� MoneyAmount� In-
teger

['instant']: Laptop� CommercialO�er� Rebate� REF_Rebate

['$',]: Laptop� CommercialO�er� Rebate� Money� Currency

['50']: Laptop� CommercialO�er� Rebate� Money� MoneyAmount� In-
teger

['o�']: Laptop� CommercialO�er� Rebate� REF_Rebate

['upgrade','to']: Laptop� Memory� MaxInstallable� REF_MaxInstallable

['2']: Laptop�Memory�MaxInstallable�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� Memory� MaxInstallable� MemorySize� MemoryUnits�
GigaByte

['memory']: Laptop� Memory� REF_Memory

['on']: Laptop� Memory� MemorySlots� OccupiedSlots� Digit

['models']: Laptop� LaptopID� Model� REF_Model

['Free']: Laptop� Memory� MemorySlots� AvailableSlots

['upgrade','to']: Laptop� Memory� MaxInstallable� REF_MaxInstallable

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 145

['LightScribe']: Laptop� OpticalDrive� Labeling

['HP']: Laptop� LaptopID� Brand

['assistance']: Laptop� WarrantyServices� Support� REF_Support

['Call']: Laptop�WarrantyServices� Support� TelephoneSupport� REF_TelephoneSupport

['1']: Laptop�WarrantyServices� Support� TelephoneSupport� ToolFreeNum-
ber� Integer

['888']: Laptop�WarrantyServices� Support� TelephoneSupport� ToolFreeNum-
ber� Integer

['999']: Laptop�WarrantyServices� Support� TelephoneSupport� ToolFreeNum-
ber� Integer

['4747']: Laptop� WarrantyServices� Support� TelephoneSupport� Tool-
FreeNumber� Integer

['Chat']: Laptop�WarrantyServices� Support�OnlineSupport� REF_OnlineSupport

['Warranty']: Laptop� WarrantyServices� REF_WarrantyServices

['Support']: Laptop� WarrantyServices� REF_WarrantyServices

['Operating','System']: Laptop� Software�OperatingSystem� REF_OperatingSystem

['Productivity']: Laptop� Software� ProductivitySoftware� REF_ProductivitySoftware

['Software']: Laptop� Software� REF_Software

['Windows','Vista']: Laptop� Software� OperatingSystem

['Home']: Laptop� Software� OperatingSystem� SubVersion

['Premium']: Laptop� Software� OperatingSystem� SubVersion

['32']: Laptop� Software�OperatingSystem� ProcessorArchitecture� BusWidth�
TwoPower

['bit']: Laptop� Software�OperatingSystem� ProcessorArchitecture� BusWidth�
Bit

['Windows','Vista']: Laptop� Software� OperatingSystem

['Business']: Laptop� Software� OperatingSystem� SubVersion

['32']: Laptop� Software�OperatingSystem� ProcessorArchitecture� BusWidth�
TwoPower

['bit']: Laptop� Software�OperatingSystem� ProcessorArchitecture� BusWidth�
Bit

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 146

['Windows','Vista']: Laptop� Software� OperatingSystem

['Ultimate']: Laptop� Software� OperatingSystem� SubVersion

['64']: Laptop� Software�OperatingSystem� ProcessorArchitecture� BusWidth�
TwoPower

['bit']: Laptop� Software�OperatingSystem� ProcessorArchitecture� BusWidth�
Bit

['Processor']: Laptop� Processor� REF_Processor

['processor']: Laptop� Processor� REF_Processor

['Intel']: Laptop� Processor� ProcessorID� Brand

['Core','(','TM',')','2','Duo']: Laptop� Processor� ProcessorID� Family

['T7100']: Laptop� Processor� ProcessorID� Model

['1.8']: Laptop� Processor� Speed� FrequencyMeasurement�Magnitude�
Decimal

['GHz']: Laptop� Processor� Speed� FrequencyMeasurement� Frequen-
cyUnits� GigaHertz

['2']: Laptop� Processor� Cache� CacheSize�MemorySize�MemoryMag-
nitude� TwoPower

['MB']: Laptop� Processor� Cache� CacheSize�MemorySize�MemoryU-
nits� MegaByte

['L2',]: Laptop� Processor� Cache� CacheLevel

['Cache']: Laptop� Processor� Cache� REF_Cache

['Intel']: Laptop� Processor� ProcessorID� Brand

['Core','(','TM',')','2','Duo']: Laptop� Processor� ProcessorID� Family

['T7300']: Laptop� Processor� ProcessorID� Model

['2.0']: Laptop� Processor� Speed� FrequencyMeasurement�Magnitude�
Decimal

['GHz']: Laptop� Processor� Speed� FrequencyMeasurement� Frequen-
cyUnits� GigaHertz

['4']: Laptop� Processor� Cache� CacheSize�MemorySize�MemoryMag-
nitude� TwoPower

['MB']: Laptop� Processor� Cache� CacheSize�MemorySize�MemoryU-
nits� MegaByte

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 147

['L2',]: Laptop� Processor� Cache� CacheLevel

['Cache']: Laptop� Processor� Cache� REF_Cache

['Intel']: Laptop� Processor� ProcessorID� Brand

['R']: Laptop� PhysicalDescription� Dimensions� Height� MaxHeight�
REF_MaxHeight

['Core','(','TM',')','2','Duo']: Laptop� Processor� ProcessorID� Family

['T7500']: Laptop� Processor� ProcessorID� Model

['2.2']: Laptop� Processor� Speed� FrequencyMeasurement�Magnitude�
Decimal

['GHz']: Laptop� Processor� Speed� FrequencyMeasurement� Frequen-
cyUnits� GigaHertz

['MB']: Laptop� Processor� Cache� CacheSize�MemorySize�MemoryU-
nits� MegaByte

['L2',]: Laptop� Processor� Cache� CacheLevel

['Cache']: Laptop� Processor� Cache� REF_Cache

['Display']: Laptop� Display� REF_Display

['17.0']: Laptop� Display� Diagonal� DistanceMagnitude

['"']: Laptop� Display� Diagonal� Inch

['WXGA','+',]: Laptop� Display� NamedResolution

['BrightView']: Laptop� Display� Technology

['Widescreen']: Laptop� Display� isWidescreen� REF_isWidescreen

['1440',]: Laptop� Display� PixelResolution� PixelResolutionHorizontal

['x',]: Laptop� Display� PixelResolution� X

['900']: Laptop� Display� PixelResolution� PixelResolutionVertical

['17.0']: Laptop� Display� Diagonal� Magnitude� Decimal

['"']: Laptop� Display� Diagonal� Inch

['WSXGA','+',]: Laptop� Display� NamedResolution

['BrightView']: Laptop� Display� Technology

['Widescreen']: Laptop� Display� isWidescreen� REF_isWidescreen

['1680',]: Laptop� Display� PixelResolution� PixelResolutionHorizontal

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 148

['x',]: Laptop� Display� PixelResolution� X

['1050']: Laptop� Display� PixelResolution� PixelResolutionVertical

['Memory']: Laptop� Memory� REF_Memory

['memory']: Laptop� Memory� REF_Memory

['1']: Laptop� Memory� Installed� MemorySize� MemoryMagnitude� In-
teger

['GB']: Laptop� Memory� Installed� MemorySize� MemoryUnits� Giga-
Byte

['DDR2']: Laptop� Memory� Technology

['System','Memory']: Laptop� Memory� REF_Memory

['2']: Laptop� Memory� MemorySlots� OccupiedSlots� Digit

['Dimm']: Laptop� Memory� ModuleType

['$',]: Laptop� CommercialO�er� Rebate� Money� Currency

['50']: Laptop� CommercialO�er� Rebate� Money� MoneyAmount� In-
teger

['o�']: Laptop� CommercialO�er� Rebate� REF_Rebate

['from']: Laptop� Memory� Installed� REF_Installed

['1']: Laptop� Memory� Installed� MemorySize� MemoryMagnitude� In-
teger

['GB']: Laptop� Memory� Installed� MemorySize� MemoryUnits� Giga-
Byte

['2']: Laptop� Memory� MemorySlots� OccupiedSlots� Digit

['Dimm']: Laptop� Memory� ModuleType

['to']: Laptop� Memory� MaxInstallable� REF_MaxInstallable

['2']: Laptop�Memory�MaxInstallable�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� Memory� MaxInstallable� MemorySize� MemoryUnits�
GigaByte

['2']: Laptop� Memory� MemorySlots� OccupiedSlots� Digit

['Dimm']: Laptop� Memory� ModuleType

['Graphics','Card']: Laptop� VideoAdapter� REF_VideoAdapter

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 149

['Intel']: Laptop� VideoAdapter� VideoAdapterID� Brand

['Graphics','Media','Accelerator']: Laptop�VideoAdapter�VideoAdapterID�
Family

['X3100']: Laptop� VideoAdapter� VideoAdapterID� Model

['notebook']: Laptop� REF_Laptop

['HP']: Laptop� LaptopID� Brand

['Microphone']: Laptop� AudioAdapter� hasMicrophone

['HP']: Laptop� LaptopID� Brand

['Mic']: Laptop� AudioAdapter� hasMicrophone

['Fingerprint','Reader']: Laptop� SecuritySpecs� PhysicalSecurity� has-
FingerprintSensor� REF_hasFingerprintSensor

['HP']: Laptop� LaptopID� Brand

['Microphone',]: Laptop� AudioAdapter� hasMicrophone

['Webcam']: Laptop� Webcam� REF_Webcam

['HP']: Laptop� LaptopID� Brand

['Fingerprint','Reader',]: Laptop� SecuritySpecs� PhysicalSecurity� has-
FingerprintSensor� REF_hasFingerprintSensor

['Webcam']: Laptop� Webcam� REF_Webcam

['Networking']: Laptop�NetworkAdapter� LANAdapter� REF_LANAdapter

['network','port']: Laptop�NetworkAdapter� LANAdapter� Jack� REF_Jack

['Intel']: Laptop� WirelessAdapter� WirelessAdapterID� Brand

['PRO','/','Wireless']: Laptop�NetworkAdapter�WirelessAdapter�Wire-
lessAdapterID� Model

['4965','AGN']: Laptop�NetworkAdapter�WirelessAdapter�WirelessAdapterID�
Model

['Network','Connection']: Laptop�NetworkAdapter� REF_NetworkAdapter

['Intel']: Laptop�NetworkAdapter�WirelessAdapter�WirelessAdapterID�
Brand

['PRO','/','Wireless']: Laptop�NetworkAdapter�WirelessAdapter�Wire-
lessAdapterID� Model

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 150

['4965','AGN']: Laptop�NetworkAdapter�WirelessAdapter�WirelessAdapterID�
Model

['Network']: Laptop�NetworkAdapter� LANAdapter� REF_LANAdapter

['Bluetooth']: Laptop�NetworkAdapter� BlueToothAdapter� REF_BlueToothAdapter

['Broadband','Wireless']: Laptop�NetworkAdapter� BroadBandWirelessAdapter�
REF_BroadBandWirelessAdapter

['Verizon']: Laptop�NetworkAdapter� BroadBandWirelessAdapter� Broad-
BandWirelessAdapterID� Brand

['Wireless']: Laptop�NetworkAdapter�WirelessAdapter� REF_WirelessAdapter

['broadband']: Laptop�NetworkAdapter� BroadBandWirelessAdapter� REF_BroadBandWirelessAdapter

['network']: Laptop� NetworkAdapter� LANAdapter� REF_LANAdapter

['Verizon']: Laptop�NetworkAdapter� BroadBandWirelessAdapter� Broad-
BandWirelessAdapterID� Brand

['Wireless']: Laptop�NetworkAdapter�WirelessAdapter� REF_WirelessAdapter

['V','740']: Laptop�NetworkAdapter� BroadBandWirelessAdapter� Broad-
BandWirelessAdapterID� Model

['ExpressCard']: Laptop� ExpansionSlots� PCExpressSlots� REF_PCExpressSlots

['Hard','Drive']: Laptop� HardDisk� REF_HardDisk

['hard','disk','drive']: Laptop� HardDisk� REF_HardDisk

['160']: Laptop�HardDisk� Capacity�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� HardDisk� Capacity� MemorySize� MemoryUnits� Gi-
gaByte

['5400',]: Laptop� HardDisk� HDRotationSpeed� HDRotationSpeedMag-
nitude

['RPM']: Laptop� HardDisk� HDRotationSpeed� RevolutionsPerMinute

['SATA']: Laptop� HardDisk� Controller

['Hard','Drive']: Laptop� HardDisk� REF_HardDisk

['240']: Laptop�HardDisk� Capacity�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� HardDisk� Capacity� MemorySize� MemoryUnits� Gi-
gaByte

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 151

['5400',]: Laptop� HardDisk� HDRotationSpeed� HDRotationSpeedMag-
nitude

['RPM']: Laptop� HardDisk� HDRotationSpeed� RevolutionsPerMinute

['SATA']: Laptop� HardDisk� Controller

['Hard','Drive']: Laptop� HardDisk� REF_HardDisk

['120']: Laptop�HardDisk� Capacity�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� HardDisk� Capacity� MemorySize� MemoryUnits� Gi-
gaByte

['320']: Laptop�HardDisk� Capacity�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� HardDisk� Capacity� MemorySize� MemoryUnits� Gi-
gaByte

['5400',]: Laptop� HardDisk� HDRotationSpeed� HDRotationSpeedMag-
nitude

['RPM']: Laptop� HardDisk� HDRotationSpeed� RevolutionsPerMinute

['SATA']: Laptop� HardDisk� Controller

['Hard','Drive']: Laptop� HardDisk� REF_HardDisk

['160']: Laptop�HardDisk� Capacity�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� HardDisk� Capacity� MemorySize� MemoryUnits� Gi-
gaByte

['400']: Laptop�HardDisk� Capacity�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� HardDisk� Capacity� MemorySize� MemoryUnits� Gi-
gaByte

['4200',]: Laptop� HardDisk� HDRotationSpeed� HDRotationSpeedMag-
nitude

['RPM']: Laptop� HardDisk� HDRotationSpeed� RevolutionsPerMinute

['SATA']: Laptop� HardDisk� Controller

['Hard','Drive']: Laptop� HardDisk� REF_HardDisk

['200']: Laptop�HardDisk� Capacity�MemorySize�MemoryMagnitude�
Integer

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 152

['GB']: Laptop� HardDisk� Capacity� MemorySize� MemoryUnits� Gi-
gaByte

['CD']: Laptop�OpticalDrive�OpticalFormat� CDFormat� REF_CDFormat

['DVD']: Laptop�OpticalDrive�OpticalFormat�DVDFormat� REF_DVDFormat

['Drive']: Laptop� OpticalDrive� REF_OpticalDrive

['Optical','drives']: Laptop� OpticalDrive� REF_OpticalDrive

['CDs']: Laptop�OpticalDrive�OpticalFormat� CDFormat� REF_CDFormat

['DVDs']: Laptop�OpticalDrive�OpticalFormat�DVDFormat� REF_DVDFormat

['8',]: Laptop� OpticalDrive� OpticalFormat� DVDFormat� ReadSpeed�
OpticalDriveSpeedMagnitude

['X']: Laptop� OpticalDrive� OpticalFormat� DVDFormat� ReadSpeed�
REF_ReadSpeed

['DVD','+','/','-','R']: Laptop� OpticalDrive� OpticalFormat� DVDFor-
mat� Media

['Double','Layer']: Laptop� OpticalDrive� DVDLayer

['LightScribe']: Laptop� OpticalDrive� Labeling

['DVD','+','/','-','RW']: Laptop� OpticalDrive� OpticalFormat� DVD-
Format� Media

['Double','Layer']: Laptop� OpticalDrive� DVDLayer

['TV']: Laptop� VideoAdapter� TVTuner� REF_TVTuner

['TV']: Laptop� VideoAdapter� TVTuner� REF_TVTuner

['No']: Laptop� VideoAdapter� TVTuner� hasTVTunner� Boolean� Not

['TV']: Laptop� VideoAdapter� TVTuner� REF_TVTuner

['remote','control']: Laptop� InputDevice� hasRemoteControl� REF_hasRemoteControl

['HP']: Laptop� LaptopID� Brand

['Expresscard']: Laptop� ExpansionSlots� PCExpressSlots� REF_PCExpressSlots

['TV','Tuner']: Laptop� VideoAdapter� TVTuner� REF_TVTuner

['Windows','Vista']: Laptop� Software� OperatingSystem

['Notebook']: Laptop� REF_Laptop

['Primary','Battery']: Laptop� Battery� REF_Battery

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 153

['battery']: Laptop� Battery� REF_Battery

['Notebook']: Laptop� REF_Laptop

['8']: Laptop� Battery� Cells� Digit

['Cell']: Laptop� Battery� Cells� REF_Cells

['Lithium','Ion']: Laptop� Battery� Technology

['Battery']: Laptop� Battery� REF_Battery

['8']: Laptop� Battery� Cells� Digit

['Cell']: Laptop� Battery� Cells� REF_Cells

['Lithium','Ion']: Laptop� Battery� Technology

['Battery']: Laptop� Battery� REF_Battery

['8']: Laptop� Battery� Cells� Digit

['Cell']: Laptop� Battery� Cells� REF_Cells

['Lithium','Ion']: Laptop� Battery� Technology

['Battery']: Laptop� Battery� REF_Battery

['Two']: Laptop� Battery� Cells� Digit

['Capacity']: Laptop� Battery� ElectricalCurrentCapacity� REF_ElectricalCurrentCapacity

['8']: Laptop� Battery� Cells� Digit

['Cell']: Laptop� Battery� Cells� REF_Cells

['Lithium','Ion']: Laptop� Battery� Technology

['Batteries']: Laptop� Battery� REF_Battery

['Security','Software']: Laptop� Software� REF_Software

['Norton']: Laptop� Software� SecuritySoftware� Brand

['Internet','Security']: Laptop� Software� SecuritySoftware� Family

['2007']: Laptop� Software� SecuritySoftware� SoftwareVersion

['15']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� Magnitude� Integer

['Months']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod�
TimeMeasurement� TimeUnits� Month

['Norton']: Laptop� Software� SecuritySoftware� Brand

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 154

['Internet','Security']: Laptop� Software� SecuritySoftware� Family

['2007']: Laptop� Software� SecuritySoftware� SoftwareVersion

['24']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� Magnitude� Integer

['Months']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod�
TimeMeasurement� TimeUnits� Month

['Norton']: Laptop� Software� SecuritySoftware� Brand

['Internet','Security']: Laptop� Software� SecuritySoftware� Family

['2007']: Laptop� Software� SecuritySoftware� SoftwareVersion

['36']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� Magnitude� Integer

['Months']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod�
TimeMeasurement� TimeUnits� Month

['HP']: Laptop� LaptopID� Brand

['Featured']: Laptop� Software� SecuritySoftware� REF_SecuritySoftware

['Software']: Laptop� Software� REF_Software

['Computrace']: Laptop� Software� SecuritySoftware� Family

['LoJack']: Laptop� Software� SecuritySoftware� Brand

['Software']: Laptop� Software� REF_Software

['Computrace']: Laptop� Software� SecuritySoftware� Family

['LoJack']: Laptop� Software� SecuritySoftware� Brand

['Laptops']: Laptop� REF_Laptop

['One']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� Magnitude� Digit

['Year']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� TimeUnits� Year

['Computrace']: Laptop� Software� SecuritySoftware� Family

['LoJack']: Laptop� Software� SecuritySoftware� Brand

['Laptops']: Laptop� REF_Laptop

['Three']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod�
TimeMeasurement� Magnitude� Digit

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 155

['Years']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� TimeUnits� Year

['Computrace']: Laptop� Software� SecuritySoftware� Family

['LoJack']: Laptop� Software� SecuritySoftware� Brand

['Laptops']: Laptop� REF_Laptop

['Four']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� Magnitude� Digit

['Years']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� TimeUnits� Year

['Back','-','Up']: Laptop� Software�UtilitySoftware� REF_UtilitySoftware

['Utilities']: Laptop� Software� UtilitySoftware� REF_UtilitySoftware

['Software']: Laptop� Software� REF_Software

['Roxio']: Laptop� Software� UtilitySoftware� Brand

['Backup','MyPC']: Laptop� Software� UtilitySoftware� Family

['Recovery']: Laptop� Software� UtilitySoftware� REF_UtilitySoftware

['Media']: Laptop� Software� MediaSoftware� REF_MediaSoftware

['Recovery']: Laptop� Software� UtilitySoftware� REF_UtilitySoftware

['DVD']: Laptop�OpticalDrive�OpticalFormat�DVDFormat� REF_DVDFormat

['Windows','Vista']: Laptop� Software� OperatingSystem

['Home']: Laptop� Software� OperatingSystem� SubVersion

['Premium']: Laptop� Software� OperatingSystem� SubVersion

['Recovery']: Laptop� Software� UtilitySoftware� REF_UtilitySoftware

['DVD']: Laptop�OpticalDrive�OpticalFormat�DVDFormat� REF_DVDFormat

['Windows','Vista']: Laptop� Software� OperatingSystem

['Ultimate']: Laptop� Software� OperatingSystem� SubVersion

['Recovery']: Laptop� Software� UtilitySoftware� REF_UtilitySoftware

['DVD']: Laptop�OpticalDrive�OpticalFormat�DVDFormat� REF_DVDFormat

['Windows','Vista']: Laptop� Software� OperatingSystem

['Business']: Laptop� Software� OperatingSystem� SubVersion

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 156

['Productivity']: Laptop� Software� ProductivitySoftware� REF_ProductivitySoftware

['Software']: Laptop� Software� REF_Software

['Microsoft']: Laptop� Software� ProductivitySoftware� Brand

['Works']: Laptop� Software� ProductivitySoftware� Family

['8.0']: Laptop� Software� ProductivitySoftware� SoftwareVersion� Deci-
mal

['Corel']: Laptop� Software� ProductivitySoftware� Brand

['WordPerfect']: Laptop� Software� ProductivitySoftware� Family

['O�ce','X3']: Laptop� Software� ProductivitySoftware� Family

['Microsoft']: Laptop� Software� ProductivitySoftware� Brand

['Works']: Laptop� Software� ProductivitySoftware� Family

['Suite']: Laptop� Software� ProductivitySoftware� SubVersion

['2006']: Laptop� Software� ProductivitySoftware� SoftwareVersion

['Word']: Laptop� Software� ProductivitySoftware� Family

['Microsoft']: Laptop� Software� ProductivitySoftware� Brand

['O�ce']: Laptop� Software� ProductivitySoftware� Family

['Basic']: Laptop� Software� ProductivitySoftware� SubVersion

['2007']: Laptop� Software� ProductivitySoftware� SoftwareVersion

['Microsoft']: Laptop� Software� ProductivitySoftware� Brand

['O�ce']: Laptop� Software� ProductivitySoftware� Family

['Home']: Laptop� Software� ProductivitySoftware� SubVersion

['Student']: Laptop� Software� ProductivitySoftware� SubVersion

['2007']: Laptop� Software� ProductivitySoftware� SoftwareVersion

['Microsoft']: Laptop� Software� ProductivitySoftware� Brand

['O�ce']: Laptop� Software� ProductivitySoftware� Family

['Small','Business']: Laptop� Software� ProductivitySoftware� SubVersion

['2007']: Laptop� Software� ProductivitySoftware� SoftwareVersion

['Microsoft']: Laptop� Software� ProductivitySoftware� Brand

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 157

['O�ce']: Laptop� Software� ProductivitySoftware� Family

['Professional']: Laptop� Software� ProductivitySoftware� SubVersion

['2007']: Laptop� Software� ProductivitySoftware� SoftwareVersion

['Premium']: Laptop� Software� ProductivitySoftware� SubVersion

['Photography']: Laptop� Software� PhotoSoftware� REF_PhotoSoftware

['Software']: Laptop� Software� REF_Software

['Software']: Laptop� Software� REF_Software

['Corel']: Laptop� Software� PhotoSoftware� Brand

['Photo','Album']: Laptop� Software� PhotoSoftware� Family

['6']: Laptop� Software� PhotoSoftware� SoftwareVersion

['Corel']: Laptop� Software� ProductivitySoftware� Brand

['Paint','Shop']: Laptop� Software� PhotoSoftware� Family

['Pro']: Laptop� Software� PhotoSoftware� SubVersion

['Photo']: Laptop� Software� PhotoSoftware� REF_PhotoSoftware

['Corel']: Laptop� Software� PhotoSoftware� Brand

['Photo','Album']: Laptop� Software� PhotoSoftware� Family

['6']: Laptop� Software� PhotoSoftware� SoftwareVersion

['Paint','Shop']: Laptop� Software� PhotoSoftware� Family

['Pro']: Laptop� Software� PhotoSoftware� SubVersion

['X1']: Laptop� Software� PhotoSoftware� SoftwareVersion

['Burner']: Laptop� Software� BurningSoftware� Family

['Software']: Laptop� Software� REF_Software

['Roxio']: Laptop� Software� BurningSoftware� Brand

['Creator']: Laptop� Software� BurningSoftware� Family

['V']: Laptop� Software� BurningSoftware� SoftwareVersion

['9']: Laptop� Software� BurningSoftware� SoftwareVersion� Integer

['Roxio']: Laptop� Software� BurningSoftware� Brand

['Creator']: Laptop� Software� BurningSoftware� Family

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 158

['Premier']: Laptop� Software� BurningSoftware� SubVersion

['V']: Laptop� Software� BurningSoftware� SoftwareVersion

['9']: Laptop� Software� BurningSoftware� SoftwareVersion� Integer

['Display','<TAB>�<TAB>']: Laptop� Display� REF_Display

['17.0']: Laptop� Display� Diagonal� DistanceMagnitude

['"']: Laptop� Display� Diagonal� Inch

['WXGA','+',]: Laptop� Display� NamedResolution

['BrightView']: Laptop� Display� Technology

['Widescreen']: Laptop� Display� isWidescreen� REF_isWidescreen

['Display']: Laptop� Display� REF_Display

['WSXGA','+',]: Laptop� Display� NamedResolution

['BrightView']: Laptop� Display� Technology

['Dimensions','<TAB>�<TAB>']: Laptop� PhysicalDescription�Dimen-
sions� REF_Dimensions

['15.16']: Laptop� PhysicalDescription�Dimensions�Depth�DistanceMea-
surement� Magnitude� Decimal

['"']: Laptop� PhysicalDescription�Dimensions�Depth�DistanceMeasure-
ment� DistanceUnits� Inch

['L']: Laptop� PhysicalDescription� Dimensions� Depth� REF_Depth

['x']: Laptop� PhysicalDescription� Dimensions� X

['11.65']: Laptop� PhysicalDescription� Dimensions� Width� Distance-
Measurement� Magnitude� Decimal

['"']: Laptop� PhysicalDescription�Dimensions�Width�DistanceMeasure-
ment� DistanceUnits� Inch

['W']: Laptop� PhysicalDescription� Dimensions� Width� REF_Width

['x']: Laptop� PhysicalDescription� Dimensions� X

['1.57']: Laptop� PhysicalDescription�Dimensions�Height�DistanceMea-
surement� Magnitude� Decimal

['"']: Laptop� PhysicalDescription�Dimensions�Height�DistanceMeasure-
ment� DistanceUnits� Inch

['Weight','<TAB>�<TAB>']: Laptop� PhysicalDescription�Weight� REF_Weight

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 159

['7.7']: Laptop� PhysicalDescription�Weight�WeightMeasurement�Mag-
nitude� Decimal

['lbs']: Laptop� PhysicalDescription�Weight�WeightMeasurement�Weigh-
tUnits� Pound

['Weight']: Laptop� PhysicalDescription� Weight� REF_Weight

['con�guration']: Laptop� Software�UtilitySoftware� REF_UtilitySoftware

['Communications','<TAB>�<TAB>']: Laptop�NetworkAdapter� REF_NetworkAdapter

['Intel']: Laptop�NetworkAdapter�WirelessAdapter�WirelessAdapterID�
Brand

['PRO','/','Wireless']: Laptop�NetworkAdapter�WirelessAdapter�Wire-
lessAdapterID� Model

['4965','AGN']: Laptop�NetworkAdapter�WirelessAdapter�WirelessAdapterID�
Model

['Network']: Laptop�NetworkAdapter� LANAdapter� REF_LANAdapter

['optional']: Laptop�NetworkAdapter� BlueToothAdapter� hasBlueToothAdapter�
Boolean� Not

['Bluetooth']: Laptop�NetworkAdapter� BlueToothAdapter� REF_BlueToothAdapter

['Broadband','Wireless']: Laptop�NetworkAdapter� BroadBandWirelessAdapter�
REF_BroadBandWirelessAdapter

['Verizon']: Laptop�NetworkAdapter� BroadBandWirelessAdapter� Broad-
BandWirelessAdapterID� Brand

['Wireless']: Laptop�NetworkAdapter�WirelessAdapter� REF_WirelessAdapter

['V','740']: Laptop�NetworkAdapter� BroadBandWirelessAdapter� Broad-
BandWirelessAdapterID� Model

['ExpressCard']: Laptop� ExpansionSlots� PCExpressSlots� REF_PCExpressSlots

['Graphics','<TAB>�<TAB>']: Laptop�VideoAdapter� REF_VideoAdapter

['Intel']: Laptop� VideoAdapter� VideoAdapterID� Brand

['Graphics','Media','Accelerator']: Laptop�VideoAdapter�VideoAdapterID�
Family

['X3100']: Laptop� VideoAdapter� VideoAdapterID� Model

['PCI','expansion']: Laptop� ExpansionSlots� PCISlots� REF_PCISlots

['Expansion','port']: Laptop� ExpansionSlots� REF_ExpansionSlots

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 160

['3']: Laptop� ExpansionSlots� PCISlots� SlotsNumber� Digit

['connector']: Laptop� ExpansionSlots� PCISlots� SlotsNumber� REF_SlotsNumber

['Memory','<TAB>�<TAB>']: Laptop� Memory� REF_Memory

['From']: Laptop� Memory� Installed� REF_Installed

['1.0']: Laptop� Memory� Installed� MemorySize� MemoryMagnitude�
Decimal

['GB']: Laptop� Memory� Installed� MemorySize� MemoryUnits� Giga-
Byte

['to']: Laptop� Memory� MaxInstallable� REF_MaxInstallable

['2.0']: Laptop� Memory� MaxInstallable� MemorySize� MemoryMagni-
tude� Decimal

['GB']: Laptop� Memory� MaxInstallable� MemorySize� MemoryUnits�
GigaByte

['DDR2']: Laptop� Memory� Technology

['SDRAM']: Laptop� Memory� Technology

['Total','memory','slots','<TAB>�<TAB>']: Laptop�Memory�Mem-
orySlots� TotalSlots� REF_TotalSlots

['2']: Laptop� Memory� MemorySlots� TotalSlots� Digit

['DIMM']: Laptop� Memory� ModuleType

['Maximum','memory']: Laptop�Memory�MaxInstallable� REF_MaxInstallable

['2']: Laptop�Memory�MaxInstallable�MemorySize�MemoryMagnitude�
Integer

['GB']: Laptop� Memory� MaxInstallable� MemorySize� MemoryUnits�
GigaByte

['Hard','disk','drive']: Laptop� HardDisk� REF_HardDisk

['s']: Laptop� HardDisk�MinSeekTime� TimeMeasurement� TimeUnits�
Second

['Up','to']: Laptop�HardDisk�MaxStorageCapacity� REF_MaxStorageCapacity

['400']: Laptop� HardDisk�MaxStorageCapacity�MemorySize�Memory-
Magnitude� Integer

['GB�']: Laptop� HardDisk� MaxStorageCapacity� MemorySize� Memo-
ryUnits� GigaByte

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 161

['4200']: Laptop� HardDisk� HDRotationSpeed� HDRotationSpeedMagni-
tude

['rpm']: Laptop� HardDisk� HDRotationSpeed� RevolutionsPerMinute

['Serial','ATA']: Laptop� HardDisk� Controller

['hard','drive']: Laptop� HardDisk� REF_HardDisk

['Primary','battery','<TAB>�<TAB>']: Laptop� Battery� REF_Battery

['8']: Laptop� Battery� Cells� Digit

['cell']: Laptop� Battery� Cells� REF_Cells

['Lithium','Ion']: Laptop� Battery� Technology

['battery']: Laptop� Battery� REF_Battery

['Battery']: Laptop� Battery� REF_Battery

['Front','-','side','bus']: Laptop� Processor� FrontSideBus� REF_FrontSideBus

['processor']: Laptop� Processor� REF_Processor

['Up','to']: Laptop� Processor� FrontSideBus� REF_FrontSideBus

['800']: Laptop� Processor� FrontSideBus� FrequencyMagnitude

['MHz']: Laptop� Processor� FrontSideBus� MegaHertz

['AC','adapter','<TAB>�<TAB>']: Laptop�ACAdapter� REF_ACAdapter

['65']: Laptop� ACAdapter� ACInput� PowerRequirements� PowerMea-
surement� Magnitude� Integer

['W']: Laptop� ACAdapter� ACInput� PowerRequirements� PowerMea-
surement� PowerUnits� Watt

['Expansion','slots','<TAB>�<TAB>']: Laptop� ExpansionSlots� REF_ExpansionSlots

['1']: Laptop� ExpansionSlots� PCExpressSlots� SlotsNumber� Digit

['ExpressCard','/','54']: Laptop� ExpansionSlots� PCExpressSlots� Type

['Slot']: Laptop� ExpansionSlots� REF_ExpansionSlots

['ExpressCard','/','34']: Laptop� ExpansionSlots� PCExpressSlots� Type

['ports','<TAB>�<TAB>']: Laptop� Interfaces� REF_Interfaces

['3']: Laptop� Interfaces� USB� NumberOfPorts

['Universal','Serial','Bus']: Laptop� Interfaces� USB� REF_USB

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 162

['USB']: Laptop� Interfaces� USB� REF_USB

['2.0']: Laptop� Interfaces� USB� Version

['IEEE','1394']: Laptop� Interfaces� IEEE1394� REF_IEEE1394

['Firewire']: Laptop� Interfaces� IEEE1394� REF_IEEE1394

['expansion','port']: Laptop� ExpansionSlots� REF_ExpansionSlots

['3']: Laptop� ExpansionSlots� PCISlots� SlotsNumber� Digit

['TV','out']: Laptop� VideoAdapter� VideoInterfaces

['S','-','video']: Laptop� VideoAdapter� VideoInterfaces

['Integrated']: Laptop� Interfaces� hasInfraRed� Boolean� Yes

['IR']: Laptop� Interfaces� hasInfraRed� REF_hasInfraRed

['remote','control','receiver']: Laptop� Interfaces� hasInfraRed� REF_hasInfraRed

['5']: Laptop� MediaAdapter� NumberOfMediaFormats� Integer

['in','-','1']: Laptop� MediaAdapter� NumberOfMediaFormats

['media','card','reader']: Laptop� MediaAdapter� REF_MediaAdapter

['microphone']: Laptop� AudioAdapter� hasMicrophone

['RJ','-','11']: Laptop� Modem� Jack

['modem']: Laptop� Modem� REF_Modem

['RJ','-','45']: Laptop� NetworkAdapter� LANAdapter� Jack

['LAN']: Laptop� NetworkAdapter� LANAdapter� REF_LANAdapter

['VGA']: Laptop� VideoAdapter� VideoInterfaces

['Speakers','<TAB>�<TAB>']: Laptop�AudioAdapter� Speaker� REF_Speaker

['Integrated']: Laptop� AudioAdapter� Speaker� hasSpeaker� Boolean�
Yes

['Altec','Lansing']: Laptop� AudioAdapter� Speaker� SpeakerID� Brand

['stereo']: Laptop� AudioAdapter� Speaker� Type

['speakers']: Laptop� AudioAdapter� Speaker� REF_Speaker

['Software']: Laptop� Software� REF_Software

['HP']: Laptop� Software� PhotoSoftware� Brand

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 163

['PhotoSmart']: Laptop� Software� PhotoSoftware� Family

['Essentials']: Laptop� Software� PhotoSoftware� SubVersion

['RealRhapsody']: Laptop� Software� MediaSoftware� Family

['Muvee']: Laptop� Software� MediaSoftware� Brand

['AutoProducer']: Laptop� Software� MediaSoftware� Family

['Basic']: Laptop� Software� MediaSoftware� SubVersion

['Edition']: Laptop� Software�MediaSoftware� SoftwareVersion� REF_SoftwareVersion

['5']: Laptop� Software� MediaSoftware� SoftwareVersion� Integer

['20']: Laptop� Software�MediaSoftware� Licence� TrialPeriod� TimeMea-
surement� Magnitude� Integer

['day']: Laptop� Software�MediaSoftware� Licence� TrialPeriod� TimeMea-
surement� TimeUnits� Day

['trial']: Laptop� Software� MediaSoftware� Licence� LicenceType

['full']: Laptop� Software� MediaSoftware� Licence� LicenceType

['version']: Laptop� Software�MediaSoftware� SoftwareVersion� REF_SoftwareVersion

['Adobe']: Laptop� Software� ProductivitySoftware� Brand

['Acrobat','Reader']: Laptop� Software� ProductivitySoftware� Family

['Microsoft']: Laptop� Software� ProductivitySoftware� Brand

['Works']: Laptop� Software� ProductivitySoftware� Family

['8.0']: Laptop� Software� ProductivitySoftware� SoftwareVersion� Deci-
mal

['Microsoft']: Laptop� Software� MediaSoftware� Brand

['Windows','Media','Player']: Laptop� Software� MediaSoftware� Fam-
ily

['11']: Laptop� Software� MediaSoftware� SoftwareVersion� Integer

['HP']: Laptop� Software� PhotoSoftware� Brand

['Roxio']: Laptop� Software� BurningSoftware� Brand

['Creator']: Laptop� Software� BurningSoftware� Family

['9']: Laptop� Software� BurningSoftware� SoftwareVersion� Integer

['Basic']: Laptop� Software� BurningSoftware� SubVersion

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 164

['HP']: Laptop� Software� MediaSoftware� Brand

['QuickPlay']: Laptop� Software� MediaSoftware� Family

['Software']: Laptop� Software� REF_Software

['introductory','versions','<TAB>�<TAB>']: Laptop� Software� Secu-
ritySoftware� SoftwareVersion

['Symantec']: Laptop� Software� SecuritySoftware� Brand

['Norton']: Laptop� Software� SecuritySoftware� Brand

['Internet','Security']: Laptop� Software� SecuritySoftware� Family

['2007']: Laptop� Software� SecuritySoftware� SoftwareVersion

['60']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� Magnitude� Integer

['days']: Laptop� Software� SecuritySoftware� Licence� TrialPeriod� TimeMea-
surement� TimeUnits� Day

['30']: Laptop� CommercialO�er� Shipping� TimeMeasurement� Magni-
tude� Integer

['day']: Laptop� CommercialO�er� Shipping� TimeMeasurement� Time-
Units� Day

['free']: Laptop� CommercialO�er� Shipping� Money

['trial']: Laptop� Software� ProductivitySoftware� Licence� LicenceType

['Microsoft']: Laptop� Software� ProductivitySoftware� Brand

['O�ce']: Laptop� Software� ProductivitySoftware� Family

['Home']: Laptop� Software� ProductivitySoftware� SubVersion

['Student']: Laptop� Software� ProductivitySoftware� SubVersion

['2007']: Laptop� Software� ProductivitySoftware� SoftwareVersion

['Edition']: Laptop� Software� ProductivitySoftware� SoftwareVersion� REF_SoftwareVersion

['60']: Laptop� Software� ProductivitySoftware� Licence� TrialPeriod�
TimeMeasurement� Magnitude� Integer

['day']: Laptop� Software� ProductivitySoftware� Licence� TrialPeriod�
TimeMeasurement� TimeUnits� Day

['trial']: Laptop� Software� ProductivitySoftware� Licence� LicenceType

['Basic','warranty']: Laptop� WarrantyServices� REF_WarrantyServices

APPENDIX C. A LAPTOP LABELED DATA-SHEET EXAMPLE 165

['One']: Laptop�WarrantyServices�Warranty� PartsWarranty� TimeMea-
surement� Magnitude� Digit

['year']: Laptop�WarrantyServices�Warranty� PartsWarranty� TimeMea-
surement� TimeUnits� Year

['hardware','parts']: Laptop�WarrantyServices�Warranty� PartsWarranty�
REF_PartsWarranty

['labor','coverage']: Laptop�WarrantyServices�Warranty� LaborWarranty�
REF_LaborWarranty

['One']: Laptop�WarrantyServices�Warranty� LaborWarranty� TimeMea-
surement� Magnitude� Digit

['year']: Laptop�WarrantyServices�Warranty� LaborWarranty� TimeMea-
surement� TimeUnits� Year

['toll','-','free']: Laptop�WarrantyServices� Support� TelephoneSupport�
REF_TelephoneSupport

['24','x','7']: Laptop�WarrantyServices� Support� TelephoneSupport�WeeklySched-
ule

['support']: Laptop� WarrantyServices� Support� REF_Support

Bibliography

[1] Eythan Adar. S-rad a simple and robust abbreviation dictionary. Technical
report, HP Laboratories Technical Report, September 2002.

[2] Eneko Agirre and German Rigau. A proposal for word sense disambiguation
using conceptual distance. In Proceedings of RANLP 96, 1996.

[3] Ergin Altintas, Elif Karsligil, and Vedat Coskun. A new semantic similarity
measure evaluated in word sense disambiguation. In Proceedings of the 15th
Nordic Conference of Computational Linguistics NODALIDA 2005, 2005.

[4] Alberto Apostolico and Concettina Guerra. The longest common subse-
quence problem revisited. Algorithmica, 2(1):315�336, 1987.

[5] B. De Baets and H. De Meyer. Transitivity-preserving fuzzi�cation schemes
for cardinality-based similarity measures. European Journal of Operational
Research 160 (2005) 726-740, 160:726�740, 2005.

[6] Ricardo Baeza-Yates and Berthier Ribero-Neto. Modern Information Re-
trieval. Addison Wesley / ACM Press, 1999.

[7] Satanjeev Banerjee and Ted Pedersen. An adapted lesk algorithm for word
sense disambiguation using wordnet. In Computational linguistics and in-
telligent text processing CICLing, 2002.

[8] Satanjeev Banerjee and Ted Pedersen. Extended gloss overlaps as a measure
of semantic relatedness. In Proceedings of the 18th IJCAI, 2003.

[9] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. String mathcing with
metric trees using an approximate distance. In Proceedings of SPIRE,
LNCS 2476, Lissbon, Portugal., 2002.

[10] T.C. Bell, J.G. Cleary, and I.H. Witten. Text Compression. Prentice Hall,
Englewood Cli�s, 1990.

[11] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scienti�c
American, 2001.

166

BIBLIOGRAPHY 167

[12] Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection us-
ing learnable string similarity measures. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, 2003.

[13] Sergey Brin. Extracting patterns and relations from the world wide web.
In WebDB Workshop at EDBT 98, 1998.

[14] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, 30(1-7):107�
117, 1998.

[15] Alexander Budanitsky and Graeme Hirst. Semantic distance in wordnet:
An experimental, application-oriented evaluation of �ve measures. InWork-
shop on WordNet and Other Lexical Resources, Second meeting of the North
American Chapter of the Association for Computational Linguistics, 2001.

[16] Paul Buitelaar, Philipp Cimiano, Stefania Racioppa, and Melanie Siegel.
Ontology-based information extraction with soba. In Proceedings of the
International Conference on Language Resources and Evaluation (LREC),
2006.

[17] Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, and Khaled
Shaalan. A survey of web information extraction systems. IEEE Transac-
tions on Knowledge and Data Engineering, 18:1411�1428, 2006.

[18] Je�rey T. Chang, Hinrich Schütze, and Russ B. Altman. Creating an online
dictionary of abbreviations from medline. Journal of the American Medical
Informatics Association, 9(6):612�620, 2002.

[19] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani.
Robust and e�cient fuzzy match for online data cleaning. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data,
2003.

[20] Boris Chidlovskii, Jon Ragetli, and Maarten de Rijke. Wrapper generation
via grammar induction. In Proceedings of the European Conference on
Machine Learning, 2000.

[21] Peter Christen. A comparison of personal name matching: Techniques
and practical issues. Technical report, The Australian National University,
Department of Computer Science, Faculty of Engineering and Information
Technology, 2006.

[22] Rudi Cilibrasi and Paul M. B. Vitányi. Clustering by compression. IEEE
Transactions on Information Theory, 51:1523�1545, 2005.

[23] Philipp Cimiano, Siegfried Handschuh, and Ste�en Staab. Towards the
self-annotating web. In Proceedings of the 13th conference on World Wide
Web, 2004, 2004.

BIBLIOGRAPHY 168

[24] Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks. Learn-
ing to harvest information for the semantic web. In Proceedings of the 1st
European Semantic Web Symposium, Heraklion, Greece, 2004.

[25] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A com-
parison of string distance metrics for name-matching tasks. In Proceedings
of the IJCAI-2003 Workshop on Information Integration on the Web, 2003.

[26] Jim Cowie, Joe Guthrie, and Louise Guthrie. Lexical disambiguation using
simulated annealing. In Proceedings of COLING-92, 1992.

[27] Hamish Cunningham. Information extraction, automatic. Encyclopedia of
Language and Linguistics, 2nd Edition, 2005.

[28] Fred J. Damerau. A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3):171�176, March 1964.

[29] Debabrata Dey and Sumit Sarkar. A distance-bases approach to entity rec-
onciliation in heterogeneous databases. IEEE Transactions on Knowledge
and Data Engineering, 14(3):567�582, 2002.

[30] Edgar W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269�271, 1959.

[31] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Ka-
nungo, K.S. McCurley, S. Rajagopalan, A. Tomkins, J.A. Tomlin, and J.Y.
Zienberer. A case for automated large scale semantic annotation. Web
Semantics, 1(1), 2003.

[32] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios.
Duplicate record detection: A survey. IEEE Transactions on Knowledge
and Data Engineering, 19(1):1�16, Jaunary 2007.

[33] David W. Embley. Toward semantic understanding an approach based
on information extraction ontologies. In Proceedings of the �fteenth Aus-
tralasian database conference Dunedin, New Zealand, volume 27, pages 3�
12, 2004.

[34] Oren Etzioni, Michele Banko, and Michael J. Cafarella. Machine read-
ing. In Proceedings of the Twenty-First National Conference on Arti�cial
Intelligence, 2006.

[35] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana Maria
Popescu, Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander
Yates. Web-scale information extraction in knowitall. In Proceedings of the
13th international conference on World Wide Web, 2004.

[36] Dayne Freitag and Andrew McCallum. Information extraction with hmm
structures learned by stochastic optimization. In AAAI, 2000.

BIBLIOGRAPHY 169

[37] Dayne Freitag and Andrew Kachites McCallum. Information extraction
with hmms and shrinkage. In Proceedings of the AAAI-99 Workshop on
Machine Learning for Informatino Extraction, 1999.

[38] William A. Gale, Kenneth W. Church, and David Yarowsky. One sense per
discourse. In Proceedings of the DARPA workshop on Speech and Natural
Language, 1992.

[39] Alexander Gelbukh, Grigori Sidorov, and San-Yong Han. Evolutionary ap-
proach to natural language word sense disambiguation through global co-
herence optimization. WSEAS Transactions on Communications, 2(1):11�
19, January 2003 2003.

[40] Osamu Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162:705�708, 1982.

[41] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. Formal Analysis in Conceptual Analysis and Knowledge
Representation, Kluwer, 1993.

[42] Siegfried Handschuh, Ste�en Staab, and Fabio Ciravegna. S-cream: Semi-
automatic creation of metadata. Knowledge Engineering and Knowledge
Management: Ontologies and the Semantic Web, 2473:165�184, 2002.

[43] R. Hwang, D. Richards, and P. Winter. The steiner tree problem. Annals
of Discrete Mathematics, 53, 1992.

[44] Jay J. Jiang and David W. Conrath. Semantic similarity based on corpus
statistics and lexical taxonomy. In Proceedings of International Conference
on Research in Computational Linguistics, Taiwan, 1997.

[45] Karen Sparck Jones. A statistical interpretation of term speci�city and its
application in retrieval. Journal of Documentation, 28(1):11�21, 1972.

[46] H. Keskustalo, A. Pirkola, K. Visala, and E. Leppanen. Non-adjacent
digrams improve matching of cross-lingual spelling variants. In Proceedings
of the 10th SPIRE Manaus, Brazil, 2003.

[47] A. Kilgarri� and J. Rosenzweig. Framework and results for english senseval.
Computers and the Humanities, 34:15�48, 2000.

[48] K. Kukich. Techniques for automatically correcting words in text. ACM
Computing Surveys, 24(4):377�439, 1992.

[49] Nicholas Kushmerick. Wrapper Induction for Information Extraction. PhD
thesis, University of Washington, 1997.

[50] Leah S. Larkey, M. Andrew Price Paul Ogilvie, and Brenden Tamilio.
Acrophile: an automated acronym extractor and server. In Proceedings
of the ACM Fifth International Conference on Digital Libraries, 2000.

BIBLIOGRAPHY 170

[51] Chodorow M. Leacock C. Combining local context and WordNet similarity
for word sense identi�cation. MIT, 1998.

[52] Michael Lesk. Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone. In Proceedings
of the 5th annual international conference on Systems documentation, 1986.

[53] Vladimir Levenshtein. Bynary codes capable of correcting deletions, inser-
tions and reversals. Doklady Akademii Nauk SSSR, 163(4):845�848, 1965.

[54] Dekang Lin. An information-theoretic de�nition of similarity. In Proceed-
ings of the 15th International Conference on Machine Learning, 1998.

[55] Dimitrios Mavroeidis, George Tsatsaronis, Michalis Vazirgiannis, Martin
Theobald, and Gerhard Weikum. Word sense disambiguation for exploit-
ing hierarchical thesauri in text classi�cation. Knowledge Discovery in
Databases: PKDD 2005, 3721/2005:181�192, 2005.

[56] Diana Maynard and Sophia Ananiadou. Recent Advances in Computational
Terminology, chapter Term Extraction using a Similarity-based Approach,
pages 271�278. John Benjamins, 2001.

[57] Luke K. McDowell and Michael Cafarella. Ontology-driven information
extraction with ontosyphon. In Proceedings of the 5th Internal Semantic
Web Conference (ISWC'06), 2006.

[58] Matthew Michelson and Craig A. Knoblock. Unsupervised information
extraction from unstructured, ungrammatical data sources on the world
wide web. International Journal on Document Analysis and Recognition,
10(3):211�226, 2007.

[59] Rada Mihalcea. Unsupervised large-vocabulary word sense disambiguation
with graph-based algorithms for sequence data labeling. In Proceedings of
the HLT/EMNLP, 2005.

[60] Rada Mihalcea and Dan Moldovan. A method for word sense disambigua-
tion of unrestricted text. In Proceedings of the 37th annual meeting of the
Association for Computational Linguistics, 1999.

[61] Rada Mihalcea, Paul Tarau, and Elizabeth Figa. Pagerank on semantic
networks, with application to word sense disambiguation. In Proceedings
of the 20th international conference on Computational Linguistics, 2004.

[62] George A. Miller, Richard T.Beckwith, Christiane D. Fellbaum, Derek
Gross, and Katherine J.Miller. Wordnet: An on-line lexical database4.
International Journal of Lexicography, 3(4):235�244, 1990.

[63] Steven N. Minton, Claude Nanjo, Craig A. Knoblock, Martin Michalowski,
and Matthew Michelson. A heterogeneous �eld matching method for record
linkage. In Proceedings of the Fifth IEEE International Conference on Data
Mining, 2005.

BIBLIOGRAPHY 171

[64] Alvaro Monge and Charles Elkan. The �eld matching problem: Algorithms
and applications. In Proceedings of The Second International Conference
on Knowledge Discovery and Data Mining, (KDD), 1996.

[65] T.F. Smith M.S. Waterman. Some biological sequence metrics. Advances
in Math, 29(4):367�387, 1976.

[66] David Nadeau and Peter D. Turney. A supervised learning approach to
acronym identi�cation. In Proceedings of the Eighteenth Canadian Confer-
ence on Arti�cial Intelligence, 2005.

[67] Roberto Navigli and Mirella Lapata. Graph connectivity measures for un-
supervised word sense disambiguation. In Proceedings of ICJAI, 2007.

[68] Saul Needleman and Christian Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48:443�453, 1970.

[69] S.B. Needleman and C.D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequences of two proteins. Journal
of Molecular Biology, 48:444�453, 1970.

[70] Youngja Park and Roy J. Byrd. Hybrid text mining for �nding abbrevia-
tions and their de�nitions. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2001.

[71] Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen. Using se-
mantic relatedness for word sense disambiguation. In Proceedings of the
Fourth International Conference on Intelligent Text Processing and Com-
putational Linguistics, Mexico City., 2002.

[72] Ted Pedersen, Serguei V.S. Pakhomov, Siddharth Patwardhan, and
Christopher G. Chute. Measures of semantic similarity and relatedness in
the biomedical domain. Journal of Biomedical Informatics, 40(3):288�299,
2007.

[73] Jakub Piskorski and Marcin Sydow. Usability of string distance metrics
for name matching tasks in polish. In Proceedings of the 3rd Language and
Technology Conference, Poznan, 2007.

[74] B. Popov, A. Kiryakov, D. Ognyano�, D. Manov, A. Kirilov, and M. Gora-
nov. Towards semantic web information extraction. In Proceedings ofthe
Human Language Technologies Workshop at 2nd International Semantic
Web Conference, 2003.

[75] James Pustejovsky, José Castaño, Brent Cochran, Maciej Kotecki, Michael
Morrell, and Anna Rumshisky. Extraction and disambiguation of acronym-
meaning pairs in medline. 2001.

BIBLIOGRAPHY 172

[76] James Pustejovsky, José Castaño, Brent Cochran, Maciej Koteckib, and
Michael Morrella. Automatic extraction of acronym-meaning pairs from
medline databases. Medinfo, 10 (Pt 1):317�375, 2001.

[77] Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development
and application of a metric on semantic nets. IEEE Transations on Sys-
tems,Man, and Cybernetics, 19(1):17�30, 1989.

[78] Philip Resnik. Using information content to evaluate semantic similarity
in a taxonomy. In Proceedings of the 14th international joint conference on
arti�cial intelligence., 1995.

[79] Uwe Reyle and Jasmin Saric. Ontology driven information extraction. In
Proceedings of the 19th Twente Workshop on Language Technology, 2001.

[80] Eric Sven Ristad and Peter N. Yianilos. Learning string edit distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5),
1998.

[81] David Sanko� and Joseph Kruskal. TimeWarps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-
Wesley, Reading, MA, 363-365, 1983.

[82] Ariel Schwartz and Marti Hearst. A simple algorithm for identifying ab-
breviation de�nitions in biomedical texts. In Proceedings of the Paci�c
Symposium on Biocomputing (PSB). University of California, Berkeley.,
2003.

[83] Ravi Sinha and Rada Mihalcea. Unsupervised graph-based word sense dis-
ambiguation using measures of word semantic similarity. In Proceedings of
the IEEE International Conference on Semantic Computing (ICSC 2007),
2007.

[84] Jiri Stetina, Sadao Kurohashi, and Makoto Nagao. General word sense
disambiguation method based on al full sentential context. In Proceeedings
of the COLING/ACL '98 Workshop on usage of WordNet in NLP, 1998.

[85] Michael Sussna. Word sense disambiguation for free-text indexing using
a massive semantic network. In Proceedings of the Second International
Conference on Information and Knowledge Base Management, CIKM'93,
1993.

[86] Kazem Taghva and Je� Gilbreth. Recognizing acronyms and their def-
initions. International Journal on Document Analysis and Recognition,
1(4):191�198, 1999.

[87] J. R. Ullmann. A binary n-gram technique for automatic correction of
substitution deletion, insertion and reversal errors in words. The Computer
Journal, 20(2):141�147, 1977.

BIBLIOGRAPHY 173

[88] Alexandros G. Valarakos, Georgios Sigletos, Vangelis Karkaletsis, Geor-
gios Paliouras, and George A. Vouros. A methodology for enriching a
multi-lingual domain ontology using machine learning. In A. Valarakos,
G. Sigletos, V. Karkaletsis, G. Paliouras, G.A. Vouros, "A Methodology
for Enriching a Multi-Lingual Domain Ontology using Machine Learning",
Proceedings of the Workshop "Text processing for Modern Greek: from sym-
bolic to statistical approaches", 6th International Conference of Greek Lin-
guistics, 2003.

[89] Andrew J. Viterbi. Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Transactions on Information
Theory, 13(2):260�269, 1967.

[90] Robert A. Wagner and Michael J. Fischer. The string-to-string correction
problem. Journal of the Association for Computing Machinery, 21(1):168�
173, 1974.

[91] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1:80�83, 1945.

[92] William Winkler and Y. Thibaudeau. An application fo the fellegi-sunter
model of record linkage to the 1990 us decenial census. Technical report,
Bureau of the Census, Washington, D.C., 1991.

[93] Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. In
Proceedings of the 32nd annual meeting of the Association for Computa-
tional Linguistics. Las Cruces,, 1994.

[94] Stuart Yeates. Automatic extraction of acronyms from text. In Proceed-
ings of the New Zealand Computer Science Research Students Conference
University of Waikato, 1999.

[95] Stuart Yeates, David Bainbridge, and Ian Witten. Using compression to
identify acronyms in text. In Data Compression Conference, 2000.

[96] Burcu Yildiz and Silvia Miksch. Motivating ontology-driven information
extraction. In Proceedings of the International Conference on Semantic
Web & Digital Libraries, 2007.

